Abstract:In cluttered scenes with inevitable occlusions and incomplete observations, selecting informative viewpoints is essential for building a reliable representation. In this context, 3D Gaussian Splatting (3DGS) offers a distinct advantage, as it can explicitly guide the selection of subsequent viewpoints and then refine the representation with new observations. However, existing approaches rely solely on geometric cues, neglect manipulation-relevant semantics, and tend to prioritize exploitation over exploration. To tackle these limitations, we introduce an instance-aware Next Best View (NBV) policy that prioritizes underexplored regions by leveraging object features. Specifically, our object-aware 3DGS distills instancelevel information into one-hot object vectors, which are used to compute confidence-weighted information gain that guides the identification of regions associated with erroneous and uncertain Gaussians. Furthermore, our method can be easily adapted to an object-centric NBV, which focuses view selection on a target object, thereby improving reconstruction robustness to object placement. Experiments demonstrate that our NBV policy reduces depth error by up to 77.14% on the synthetic dataset and 34.10% on the real-world GraspNet dataset compared to baselines. Moreover, compared to targeting the entire scene, performing NBV on a specific object yields an additional reduction of 25.60% in depth error for that object. We further validate the effectiveness of our approach through real-world robotic manipulation tasks.
Abstract:Category-level object pose estimation requires both global context and local structure to ensure robustness against intra-class variations. However, 3D graph convolution (3D-GC) methods only focus on local geometry and depth information, making them vulnerable to complex objects and visual ambiguities. To address this, we present THE-Pose, a novel category-level 6D pose estimation framework that leverages a topological prior via surface embedding and hybrid graph fusion. Specifically, we extract consistent and invariant topological features from the image domain, effectively overcoming the limitations inherent in existing 3D-GC based methods. Our Hybrid Graph Fusion (HGF) module adaptively integrates the topological features with point-cloud features, seamlessly bridging 2D image context and 3D geometric structure. These fused features ensure stability for unseen or complicated objects, even under significant occlusions. Extensive experiments on the REAL275 dataset show that THE-Pose achieves a 35.8% improvement over the 3D-GC baseline (HS-Pose) and surpasses the previous state-of-the-art by 7.2% across all key metrics. The code is avaialbe on https://github.com/EHxxx/THE-Pose