Abstract:We study an elementary problem of the topological robotics: collective motion of a set of $n$ distinct particles which one has to move from an initial configuration to a final configuration, with the requirement that no collisions occur in the process of motion. The ultimate goal is to construct an algorithm which will perform this task once the initial and the final configurations are given. This reduces to a topological problem of finding the topological complexity TC(C_n(\R^m)) of the configutation space C_n(\R^m) of $n$ distinct ordered particles in \R^m. We solve this problem for m=2 (the planar case) and for all odd m, including the case m=3 (particles in the three-dimensional space). We also study a more general motion planning problem in Euclidean space with a hyperplane arrangement as obstacle.
Abstract:We study an elementary problem of topological robotics: rotation of a line, which is fixed by a revolving joint at a base point: one wants to bring the line from its initial position to a final position by a continuous motion in the space. The final goal is to construct an algorithm which will perform this task once the initial and final positions are given. Any such motion planning algorithm will have instabilities, which are caused by topological reasons. A general approach to study instabilities of robot motion was suggested recently by the first named author. With any path-connected topological space X one associates a number TC(X), called the topological complexity of X. This number is of fundamental importance for the motion planning problem: TC(X) determines character of instabilities which have all motion planning algorithms in X. In the present paper we study the topological complexity of real projective spaces. In particular we compute TC(RP^n) for all n<24. Our main result is that (for n distinct from 1, 3, 7) the problem of calculating of TC(RP^n) is equivalent to finding the smallest k such that RP^n can be immersed into the Euclidean space R^{k-1}.