Suzhou Nianji Intelligent Technology Co., Ltd
Abstract:LLMs are becoming increasingly capable and widespread. Consequently, the potential and reality of their misuse is also growing. In this work, we address the problem of detecting LLM-generated text that is not explicitly declared as such. We present a novel, general-purpose, and supervised LLM text detector, SElected-Next-Token tRAnsformer (SENTRA). SENTRA is a Transformer-based encoder leveraging selected-next-token-probability sequences and utilizing contrastive pre-training on large amounts of unlabeled data. Our experiments on three popular public datasets across 24 domains of text demonstrate SENTRA is a general-purpose classifier that significantly outperforms popular baselines in the out-of-domain setting.
Abstract:Brain-computer interface (BCI) technology establishes a direct communication pathway between the brain and external devices. Current visual BCI systems suffer from insufficient information transfer rates (ITRs) for practical use. Spatial information, a critical component of visual perception, remains underexploited in existing systems because the limited spatial resolution of recording methods hinders the capture of the rich spatiotemporal dynamics of brain signals. This study proposed a frequency-phase-space fusion encoding method, integrated with 256-channel high-density electroencephalogram (EEG) recordings, to develop high-speed BCI systems. In the classical frequency-phase encoding 40-target BCI paradigm, the 256-66, 128-32, and 64-21 electrode configurations brought theoretical ITR increases of 83.66%, 79.99%, and 55.50% over the traditional 64-9 setup. In the proposed frequency-phase-space encoding 200-target BCI paradigm, these increases climbed to 195.56%, 153.08%, and 103.07%. The online BCI system achieved an average actual ITR of 472.7 bpm. This study demonstrates the essential role and immense potential of high-density EEG in decoding the spatiotemporal information of visual stimuli.