Abstract:Post-training language models (LMs) with reinforcement learning (RL) can enhance their complex reasoning capabilities without supervised fine-tuning, as demonstrated by DeepSeek-R1-Zero. However, effectively utilizing RL for LMs requires significant parallelization to scale-up inference, which introduces non-trivial technical challenges (e.g. latency, memory, and reliability) alongside ever-growing financial costs. We present Swarm sAmpling Policy Optimization (SAPO), a fully decentralized and asynchronous RL post-training algorithm. SAPO is designed for decentralized networks of heterogenous compute nodes, where each node manages its own policy model(s) while "sharing" rollouts with others in the network; no explicit assumptions about latency, model homogeneity, or hardware are required and nodes can operate in silo if desired. As a result, the algorithm avoids common bottlenecks in scaling RL post-training while also allowing (and even encouraging) new possibilities. By sampling rollouts "shared" across the network, it enables "Aha moments" to propagate, thereby bootstrapping the learning process. In this paper we show SAPO achieved cumulative reward gains of up to 94% in controlled experiments. We also share insights from tests on a network with thousands of nodes contributed by Gensyn community members running the algorithm on diverse hardware and models during an open-source demo.
Abstract:Fictitious play (FP) is a well-studied algorithm that enables agents to learn Nash equilibrium in games with certain reward structures. However, when agents have no prior knowledge of the reward functions, FP faces a major challenge: the joint action space grows exponentially with the number of agents, which slows down reward exploration. Anonymous games offer a structure that mitigates this issue. In these games, the rewards depend only on the actions taken; not on who is taking which action. Under such a structure, we introduce aggregate fictitious play (agg-FP), a variant of FP where each agent tracks the frequency of the number of other agents playing each action, rather than these agents' individual actions. We show that in anonymous polymatrix games, agg-FP converges to a Nash equilibrium under the same conditions as classical FP. In essence, by aggregating the agents' actions, we reduce the action space without losing the convergence guarantees. Using simulations, we provide empirical evidence on how this reduction accelerates convergence.