Abstract:The increasing integration of Visual Language Models (VLMs) into AI systems necessitates robust model alignment, especially when handling multimodal content that combines text and images. Existing evaluation datasets heavily lean towards text-only prompts, leaving visual vulnerabilities under evaluated. To address this gap, we propose \textbf{Text2VLM}, a novel multi-stage pipeline that adapts text-only datasets into multimodal formats, specifically designed to evaluate the resilience of VLMs against typographic prompt injection attacks. The Text2VLM pipeline identifies harmful content in the original text and converts it into a typographic image, creating a multimodal prompt for VLMs. Also, our evaluation of open-source VLMs highlights their increased susceptibility to prompt injection when visual inputs are introduced, revealing critical weaknesses in the current models' alignment. This is in addition to a significant performance gap compared to closed-source frontier models. We validate Text2VLM through human evaluations, ensuring the alignment of extracted salient concepts; text summarization and output classification align with human expectations. Text2VLM provides a scalable tool for comprehensive safety assessment, contributing to the development of more robust safety mechanisms for VLMs. By enhancing the evaluation of multimodal vulnerabilities, Text2VLM plays a role in advancing the safe deployment of VLMs in diverse, real-world applications.
Abstract:We propose a simple method to identify a continuous Lie algebra symmetry in a dataset through regression by an artificial neural network. Our proposal takes advantage of the $ \mathcal{O}(\epsilon^2)$ scaling of the output variable under infinitesimal symmetry transformations on the input variables. As symmetry transformations are generated post-training, the methodology does not rely on sampling of the full representation space or binning of the dataset, and the possibility of false identification is minimised. We demonstrate our method in the SU(3)-symmetric (non-) linear $\Sigma$ model.