Abstract:Neural Radiance Fields (NeRFs) have been remarkably successful at synthesizing novel views of 3D scenes by optimizing a volumetric scene function. This scene function models how optical rays bring color information from a 3D object to the camera pixels. Radio frequency (RF) or audio signals can also be viewed as a vehicle for delivering information about the environment to a sensor. However, unlike camera pixels, an RF/audio sensor receives a mixture of signals that contain many environmental reflections (also called "multipath"). Is it still possible to infer the environment using such multipath signals? We show that with redesign, NeRFs can be taught to learn from multipath signals, and thereby "see" the environment. As a grounding application, we aim to infer the indoor floorplan of a home from sparse WiFi measurements made at multiple locations inside the home. Although a difficult inverse problem, our implicitly learnt floorplans look promising, and enables forward applications, such as indoor signal prediction and basic ray tracing.
Abstract:This paper considers the problem of estimating chirp parameters from a noisy mixture of chirps. While a rich body of work exists in this area, challenges remain when extending these techniques to chirps of higher order polynomials. We formulate this as a non-convex optimization problem and propose a modified Langevin Monte Carlo (LMC) sampler that exploits the average curvature of the objective function to reliably find the minimizer. Results show that our Curvature-guided LMC (CG-LMC) algorithm is robust and succeeds even in low SNR regimes, making it viable for practical applications.