Abstract:Large language models (LLMs) show promise for improving the efficiency of qualitative analysis in large, multi-site health-services research. Yet methodological guidance for LLM integration into qualitative analysis and evidence of their impact on real-world research methods and outcomes remain limited. We developed a model- and task-agnostic framework for designing human-LLM qualitative analysis methods to support diverse analytic aims. Within a multi-site study of diabetes care at Federally Qualified Health Centers (FQHCs), we leveraged the framework to implement human-LLM methods for (1) qualitative synthesis of researcher-generated summaries to produce comparative feedback reports and (2) deductive coding of 167 interview transcripts to refine a practice-transformation intervention. LLM assistance enabled timely feedback to practitioners and the incorporation of large-scale qualitative data to inform theory and practice changes. This work demonstrates how LLMs can be integrated into applied health-services research to enhance efficiency while preserving rigor, offering guidance for continued innovation with LLMs in qualitative research.
Abstract:Social determinants of health (SDOH) play a critical role in Type 2 Diabetes (T2D) management but are often absent from electronic health records and risk prediction models. Most individual-level SDOH data is collected through structured screening tools, which lack the flexibility to capture the complexity of patient experiences and unique needs of a clinic's population. This study explores the use of large language models (LLMs) to extract structured SDOH information from unstructured patient life stories and evaluate the predictive value of both the extracted features and the narratives themselves for assessing diabetes control. We collected unstructured interviews from 65 T2D patients aged 65 and older, focused on their lived experiences, social context, and diabetes management. These narratives were analyzed using LLMs with retrieval-augmented generation to produce concise, actionable qualitative summaries for clinical interpretation and structured quantitative SDOH ratings for risk prediction modeling. The structured SDOH ratings were used independently and in combination with traditional laboratory biomarkers as inputs to linear and tree-based machine learning models (Ridge, Lasso, Random Forest, and XGBoost) to demonstrate how unstructured narrative data can be applied in conventional risk prediction workflows. Finally, we evaluated several LLMs on their ability to predict a patient's level of diabetes control (low, medium, high) directly from interview text with A1C values redacted. LLMs achieved 60% accuracy in predicting diabetes control levels from interview text. This work demonstrates how LLMs can translate unstructured SDOH-related data into structured insights, offering a scalable approach to augment clinical risk models and decision-making.
Abstract:Adapting language models to the clinical domain through continued pretraining and fine-tuning requires costly retraining for each new model generation. We propose Cross-Architecture Proxy Tuning (CAPT), a model-ensembling approach that enables training-free adaptation of state-of-the-art general-domain models using existing clinical models. CAPT supports models with disjoint vocabularies, leveraging contrastive decoding to selectively inject clinically relevant signals while preserving the general-domain model's reasoning and fluency. On six clinical classification and text-generation tasks, CAPT with a new-generation general-domain model and an older-generation clinical model consistently outperforms both models individually and state-of-the-art ensembling approaches (average +17.6% over UniTE, +41.4% over proxy tuning across tasks). Through token-level analysis and physician case studies, we demonstrate that CAPT amplifies clinically actionable language, reduces context errors, and increases clinical specificity.