Center for MicroElectroMechanical Systems
Abstract:Inertial-based Motion capture system has been attracting growing attention due to its wearability and unsconstrained use. However, accurate human joint estimation demands several complex and expertise demanding steps, which leads to expensive software such as the state-of-the-art MVN Awinda from Xsens Technologies. This work aims to study the use of Neural Networks to abstract the complex biomechanical models and analytical mathematics required for pose estimation. Thus, it presents a comparison of different Neural Network architectures and methodologies to understand how accurately these methods can estimate human pose, using both low cost(MPU9250) and high end (Mtw Awinda) Magnetic, Angular Rate, and Gravity (MARG) sensors. The most efficient method was the Hybrid LSTM-Madgwick detached, which achieved an Quaternion Angle distance error of 7.96, using Mtw Awinda data. Also, an ablation study was conducted to study the impact of data augmentation, output representation, window size, loss function and magnetometer data on the pose estimation error. This work indicates that Neural Networks can be trained to estimate human pose, with results comparable to the state-of-the-art fusion filters.
Abstract:Work-Related Musculoskeletal Disorders continue to be a major challenge in industrial environments, leading to reduced workforce participation, increased healthcare costs, and long-term disability. This study introduces a human-sensitive robotic system aimed at reintegrating individuals with a history of musculoskeletal disorders into standard job roles, while simultaneously optimizing ergonomic conditions for the broader workforce. This research leverages reinforcement learning to develop a human-aware control strategy for collaborative robots, focusing on optimizing ergonomic conditions and preventing pain during task execution. Two RL approaches, Q-Learning and Deep Q-Network (DQN), were implemented and tested to personalize control strategies based on individual user characteristics. Although experimental results revealed a simulation-to-real gap, a fine-tuning phase successfully adapted the policies to real-world conditions. DQN outperformed Q-Learning by completing tasks faster while maintaining zero pain risk and safe ergonomic levels. The structured testing protocol confirmed the system's adaptability to diverse human anthropometries, underscoring the potential of RL-driven cobots to enable safer, more inclusive workplaces.