IMES, Massachusetts Institute of Technology, Cambridge, MA, USA, GEVAB, IQS School of Engineering, Barcelona, Spain
Abstract:Work-Related Musculoskeletal Disorders continue to be a major challenge in industrial environments, leading to reduced workforce participation, increased healthcare costs, and long-term disability. This study introduces a human-sensitive robotic system aimed at reintegrating individuals with a history of musculoskeletal disorders into standard job roles, while simultaneously optimizing ergonomic conditions for the broader workforce. This research leverages reinforcement learning to develop a human-aware control strategy for collaborative robots, focusing on optimizing ergonomic conditions and preventing pain during task execution. Two RL approaches, Q-Learning and Deep Q-Network (DQN), were implemented and tested to personalize control strategies based on individual user characteristics. Although experimental results revealed a simulation-to-real gap, a fine-tuning phase successfully adapted the policies to real-world conditions. DQN outperformed Q-Learning by completing tasks faster while maintaining zero pain risk and safe ergonomic levels. The structured testing protocol confirmed the system's adaptability to diverse human anthropometries, underscoring the potential of RL-driven cobots to enable safer, more inclusive workplaces.
Abstract:The possibility of recognizing diverse aspects of human behavior and environmental context from passively captured data motivates its use for mental health assessment. In this paper, we analyze the contribution of different passively collected sensor data types (WiFi, GPS, Social interaction, Phone Log, Physical Activity, Audio, and Academic features) to predict daily selfreport stress and PHQ-9 depression score. First, we compute 125 mid-level features from the original raw data. These 125 features include groups of features from the different sensor data types. Then, we evaluate the contribution of each feature type by comparing the performance of Neural Network models trained with all features against Neural Network models trained with specific feature groups. Our results show that WiFi features (which encode mobility patterns) and Phone Log features (which encode information correlated with sleep patterns), provide significative information for stress and depression prediction.