Abstract:We revisit benchmarks for differentially private image classification. We suggest a comprehensive set of benchmarks, allowing researchers to evaluate techniques for differentially private machine learning in a variety of settings, including with and without additional data, in convex settings, and on a variety of qualitatively different datasets. We further test established techniques on these benchmarks in order to see which ideas remain effective in different settings. Finally, we create a publicly available leader board for the community to track progress in differentially private machine learning.
Abstract:Large-scale pretrained models such as LXMERT are becoming popular for learning cross-modal representations on text-image pairs for vision-language tasks. According to the lottery ticket hypothesis, NLP and computer vision models contain smaller subnetworks capable of being trained in isolation to full performance. In this paper, we combine these observations to evaluate whether such trainable subnetworks exist in LXMERT when fine-tuned on the VQA task. In addition, we perform a model size cost-benefit analysis by investigating how much pruning can be done without significant loss in accuracy. Our experiment results demonstrate that LXMERT can be effectively pruned by 40%-60% in size with 3% loss in accuracy.