Abstract:The rapid spread of misinformation, further amplified by recent advances in generative AI, poses significant threats to society, impacting public opinion, democratic stability, and national security. Understanding and proactively assessing these threats requires exploring methodologies that enable structured and scalable misinformation generation. In this paper, we propose a novel approach that leverages knowledge graphs (KGs) as structured semantic resources to systematically generate fake triplets. By analyzing the structural properties of KGs, such as the distance between entities and their predicates, we identify plausibly false relationships. These triplets are then used to guide large language models (LLMs) in generating misinformation statements with varying degrees of credibility. By utilizing structured semantic relationships, our deterministic approach produces misinformation inherently challenging for humans to detect, drawing exclusively upon publicly available KGs (e.g., WikiGraphs). Additionally, we investigate the effectiveness of LLMs in distinguishing between genuine and artificially generated misinformation. Our analysis highlights significant limitations in current LLM-based detection methods, underscoring the necessity for enhanced detection strategies and a deeper exploration of inherent biases in generative models.
Abstract:Today's large language models (LLMs) can solve challenging question-answering tasks, and prompt engineering techniques, such as chain-of-thought (CoT), have gained attention for enhancing the explanation and correctness of outputs. Nevertheless, models require significant time to generate answers augmented with lengthy reasoning details. To address this issue, this paper analyzes the impact of output lengths on LLM inference pipelines and proposes novel metrics to evaluate them in terms of \textit{correct conciseness}. It also examines the impact of controlling output length through a refined prompt engineering strategy, Constrained-CoT (CCoT), which encourages the model to limit output length. Experiments on pre-trained LLMs demonstrated the benefit of the proposed metrics and the effectiveness of CCoT across different models. For instance, constraining the reasoning of LLaMA2-70b to 100 words improves the accuracy from 36.01\% (CoT) to 41.07\% (CCoT) on the GSM8K dataset, while reducing the average output length by 28 words.