Abstract:Remote sensing change detection (RSCD) aims to identify the spatio-temporal changes of land cover, providing critical support for multi-disciplinary applications (e.g., environmental monitoring, disaster assessment, and climate change studies). Existing methods focus either on extracting features from localized patches, or pursue processing entire images holistically, which leads to the cross temporal feature matching deviation and exhibiting sensitivity to radiometric and geometric noise. Following the above issues, we propose a dual-module collaboration guided hierarchical adaptive aggregation framework, namely HA2F, which consists of dynamic hierarchical feature calibration module (DHFCM) and noise-adaptive feature refinement module (NAFRM). The former dynamically fuses adjacent-level features through perceptual feature selection, suppressing irrelevant discrepancies to address multi-temporal feature alignment deviations. The NAFRM utilizes the dual feature selection mechanism to highlight the change sensitive regions and generate spatial masks, suppressing the interference of irrelevant regions or shadows. Extensive experiments verify the effectiveness of the proposed HA2F, which achieves state-of-the-art performance on LEVIR-CD, WHU-CD, and SYSU-CD datasets, surpassing existing comparative methods in terms of both precision metrics and computational efficiency. In addition, ablation experiments show that DHFCM and NAFRM are effective. \href{https://huggingface.co/InPeerReview/RemoteSensingChangeDetection-RSCD.HA2F}{HA2F Official Code is Available Here!}
Abstract:Infrared small target detection (IRSTD) plays a crucial role in numerous military and civilian applications. However, existing methods often face the gradual degradation of target edge pixels as the number of network layers increases, and traditional convolution struggles to differentiate between frequency components during feature extraction, leading to low-frequency backgrounds interfering with high-frequency targets and high-frequency noise triggering false detections. To address these limitations, we propose MDAFNet (Multi-scale Differential Edge and Adaptive Frequency Guided Network for Infrared Small Target Detection), which integrates the Multi-Scale Differential Edge (MSDE) module and Dual-Domain Adaptive Feature Enhancement (DAFE) module. The MSDE module, through a multi-scale edge extraction and enhancement mechanism, effectively compensates for the cumulative loss of target edge information during downsampling. The DAFE module combines frequency domain processing mechanisms with simulated frequency decomposition and fusion mechanisms in the spatial domain to effectively improve the network's capability to adaptively enhance high-frequency targets and selectively suppress high-frequency noise. Experimental results on multiple datasets demonstrate the superior detection performance of MDAFNet.
Abstract:Infrared small target detection (IRSTD) is critical for applications like remote sensing and surveillance, which aims to identify small, low-contrast targets against complex backgrounds. However, existing methods often struggle with inadequate joint modeling of local-global features (harming target-background discrimination) or feature redundancy and semantic dilution (degrading target representation quality). To tackle these issues, we propose DCCS-Det (Directional Context and Cross-Scale Aware Detector for Infrared Small Target), a novel detector that incorporates a Dual-stream Saliency Enhancement (DSE) block and a Latent-aware Semantic Extraction and Aggregation (LaSEA) module. The DSE block integrates localized perception with direction-aware context aggregation to help capture long-range spatial dependencies and local details. On this basis, the LaSEA module mitigates feature degradation via cross-scale feature extraction and random pooling sampling strategies, enhancing discriminative features and suppressing noise. Extensive experiments show that DCCS-Det achieves state-of-the-art detection accuracy with competitive efficiency across multiple datasets. Ablation studies further validate the contributions of DSE and LaSEA in improving target perception and feature representation under complex scenarios. \href{https://huggingface.co/InPeerReview/InfraredSmallTargetDetection-IRSTD.DCCS}{DCCS-Det Official Code is Available Here!}