Abstract:We introduce Green-NAS, a multi-objective NAS (neural architecture search) framework designed for low-resource environments using weather forecasting as a case study. By adhering to 'Green AI' principles, the framework explicitly minimizes computational energy costs and carbon footprints, prioritizing sustainable deployment over raw computational scale. The Green-NAS architecture search method is optimized for both model accuracy and efficiency to find lightweight models with high accuracy and very few model parameters; this is accomplished through an optimization process that simultaneously optimizes multiple objectives. Our best-performing model, Green-NAS-A, achieved an RMSE of 0.0988 (i.e., within 1.4% of our manually tuned baseline) using only 153k model parameters, which is 239 times fewer than other globally applied weather forecasting models, such as GraphCast. In addition, we also describe how the use of transfer learning will improve the weather forecasting accuracy by approximately 5.2%, in comparison to a naive approach of training a new model for each city, when there is limited historical weather data available for that city.
Abstract:Traditional approaches in speech emotion recognition, such as LSTM, CNN, RNN, SVM, and MLP, have limitations such as difficulty capturing long-term dependencies in sequential data, capturing the temporal dynamics, and struggling to capture complex patterns and relationships in multimodal data. This research addresses these shortcomings by proposing an ensemble model that combines Graph Convolutional Networks (GCN) for processing textual data and the HuBERT transformer for analyzing audio signals. We found that GCNs excel at capturing Long-term contextual dependencies and relationships within textual data by leveraging graph-based representations of text and thus detecting the contextual meaning and semantic relationships between words. On the other hand, HuBERT utilizes self-attention mechanisms to capture long-range dependencies, enabling the modeling of temporal dynamics present in speech and capturing subtle nuances and variations that contribute to emotion recognition. By combining GCN and HuBERT, our ensemble model can leverage the strengths of both approaches. This allows for the simultaneous analysis of multimodal data, and the fusion of these modalities enables the extraction of complementary information, enhancing the discriminative power of the emotion recognition system. The results indicate that the combined model can overcome the limitations of traditional methods, leading to enhanced accuracy in recognizing emotions from speech.