Abstract:Accurate prediction of flow delay is essential for optimizing and managing modern communication networks. We investigate three levels of modeling for this task. First, we implement a heterogeneous GNN with attention-based message passing, establishing a strong neural baseline. Second, we propose FlowKANet in which Kolmogorov-Arnold Networks replace standard MLP layers, reducing trainable parameters while maintaining competitive predictive performance. FlowKANet integrates KAMP-Attn (Kolmogorov-Arnold Message Passing with Attention), embedding KAN operators directly into message-passing and attention computation. Finally, we distill the model into symbolic surrogate models using block-wise regression, producing closed-form equations that eliminate trainable weights while preserving graph-structured dependencies. The results show that KAN layers provide a favorable trade-off between efficiency and accuracy and that symbolic surrogates emphasize the potential for lightweight deployment and enhanced transparency.
Abstract:Reinforcement learning (RL) has been increasingly applied to network control problems, such as load balancing. However, existing RL approaches often suffer from lack of interpretability and difficulty in extracting controller equations. In this paper, we propose the use of Kolmogorov-Arnold Networks (KAN) for interpretable RL in network control. We employ a PPO agent with a 1-layer actor KAN model and an MLP Critic network to learn load balancing policies that maximise throughput utility, minimize loss as well as delay. Our approach allows us to extract controller equations from the learned neural networks, providing insights into the decision-making process. We evaluate our approach using different reward functions demonstrating its effectiveness in improving network performance while providing interpretable policies.