LAHC, EURISE
Abstract:Accurate prediction of flow delay is essential for optimizing and managing modern communication networks. We investigate three levels of modeling for this task. First, we implement a heterogeneous GNN with attention-based message passing, establishing a strong neural baseline. Second, we propose FlowKANet in which Kolmogorov-Arnold Networks replace standard MLP layers, reducing trainable parameters while maintaining competitive predictive performance. FlowKANet integrates KAMP-Attn (Kolmogorov-Arnold Message Passing with Attention), embedding KAN operators directly into message-passing and attention computation. Finally, we distill the model into symbolic surrogate models using block-wise regression, producing closed-form equations that eliminate trainable weights while preserving graph-structured dependencies. The results show that KAN layers provide a favorable trade-off between efficiency and accuracy and that symbolic surrogates emphasize the potential for lightweight deployment and enhanced transparency.




Abstract:Recently, different works proposed a new way to mine patterns in databases with pathological size. For example, experiments in genome biology usually provide databases with thousands of attributes (genes) but only tens of objects (experiments). In this case, mining the "transposed" database runs through a smaller search space, and the Galois connection allows to infer the closed patterns of the original database. We focus here on constrained pattern mining for those unusual databases and give a theoretical framework for database and constraint transposition. We discuss the properties of constraint transposition and look into classical constraints. We then address the problem of generating the closed patterns of the original database satisfying the constraint, starting from those mined in the "transposed" database. Finally, we show how to generate all the patterns satisfying the constraint from the closed ones.




Abstract:In this paper, we propose a technique to extract constrained formal concepts.


Abstract:Data mining algorithms are now able to efficiently deal with huge amount of data. Various kinds of patterns may be discovered and may have some great impact on the general development of knowledge. In many domains, end users may want to have their data mined by data mining tools in order to extract patterns that could impact their business. Nevertheless, those users are often overwhelmed by the large quantity of patterns extracted in such a situation. Moreover, some privacy issues, or some commercial one may lead the users not to be able to mine the data by themselves. Thus, the users may not have the possibility to perform many experiments integrating various constraints in order to focus on specific patterns they would like to extract. Post processing of patterns may be an answer to that drawback. Thus, in this paper we present a framework that could allow end users to manage collections of patterns. We propose to use an efficient data structure on which some algebraic operators may be used in order to retrieve or access patterns in pattern bases.