Abstract:Federated Learning (FL) holds great promise for digital health by enabling collaborative model training without compromising patient data privacy. However, heterogeneity across institutions, lack of sustained reputation, and unreliable contributions remain major challenges. In this paper, we propose a robust, peer-driven reputation mechanism for federated healthcare that employs a hybrid communication model to integrate decentralized peer feedback with clustering-based noise handling to enhance model aggregation. Crucially, our approach decouples the federated aggregation and reputation mechanisms by applying differential privacy to client-side model updates before sharing them for peer evaluation. This ensures sensitive information remains protected during reputation computation, while unaltered updates are sent to the server for global model training. Using the Cox Proportional Hazards model for survival analysis across multiple federated nodes, our framework addresses both data heterogeneity and reputation deficit by dynamically adjusting trust scores based on local performance improvements measured via the concordance index. Experimental evaluations on both synthetic datasets and the SEER dataset demonstrate that our method consistently achieves high and stable C-index values, effectively down-weighing noisy client updates and outperforming FL methods that lack a reputation system.
Abstract:In recent years, Sentiment Analysis (SA) and Emotion Recognition (ER) have been increasingly popular in the Bangla language, which is the seventh most spoken language throughout the entire world. However, the language is structurally complicated, which makes this field arduous to extract emotions in an accurate manner. Several distinct approaches such as the extraction of positive and negative sentiments as well as multiclass emotions, have been implemented in this field of study. Nevertheless, the extraction of multiple sentiments is an almost untouched area in this language. Which involves identifying several feelings based on a single piece of text. Therefore, this study demonstrates a thorough method for constructing an annotated corpus based on scrapped data from Facebook to bridge the gaps in this subject area to overcome the challenges. To make this annotation more fruitful, the context-based approach has been used. Bidirectional Encoder Representations from Transformers (BERT), a well-known methodology of transformers, have been shown the best results of all methods implemented. Finally, a web application has been developed to demonstrate the performance of the pre-trained top-performer model (BERT) for multi-label ER in Bangla.