Abstract:This work introduces a compact and hardware efficient method for compressing color images using near term quantum devices. The approach segments the image into fixed size blocks called bixels, and computes the total intensity within each block. A global histogram with B bins is then constructed from these block intensities, and the normalized square roots of the bin counts are encoded as amplitudes into an n qubit quantum state. Amplitude embedding is performed using PennyLane and executed on real IBM Quantum hardware. The resulting state is measured to reconstruct the histogram, enabling approximate recovery of block intensities and full image reassembly. The method maintains a constant qubit requirement based solely on the number of histogram bins, independent of the resolution of the image. By adjusting B, users can control the trade off between fidelity and resource usage. Empirical results demonstrate high quality reconstructions using as few as 5 to 7 qubits, significantly outperforming conventional pixel level encodings in terms of qubit efficiency and validating the practical application of the method for current NISQ era quantum systems.
Abstract:This paper introduces a quantum-inspired denoising framework that integrates the Quantum Fourier Transform (QFT) into classical audio enhancement pipelines. Unlike conventional Fast Fourier Transform (FFT) based methods, QFT provides a unitary transformation with global phase coherence and energy preservation, enabling improved discrimination between speech and noise. The proposed approach replaces FFT in Wiener and spectral subtraction filters with a QFT operator, ensuring consistent hyperparameter settings for fair comparison. Experiments on clean speech, synthetic tones, and noisy mixtures across diverse signal to noise ratio (SNR) conditions, demonstrate statistically significant gains in SNR, with up to 15 dB improvement and reduced artifact generation. Results confirm that QFT based denoising offers robustness under low SNR and nonstationary noise scenarios without additional computational overhead, highlighting its potential as a scalable pathway toward quantum-enhanced speech processing.
Abstract:In this paper, a novel quantum classical hybrid framework is proposed that synergizes quantum with Classical Reinforcement Learning. By leveraging the inherent parallelism of quantum computing, the proposed approach generates robust Q tables and specialized turn cost estimations, which are then integrated with a classical Reinforcement Learning pipeline. The Classical Quantum fusion results in rapid convergence of training, reducing the training time significantly and improved adaptability in scenarios featuring static, dynamic, and moving obstacles. Simulator based evaluations demonstrate significant enhancements in path efficiency, trajectory smoothness, and mission success rates, underscoring the potential of framework for real time, autonomous navigation in complex and unpredictable environments. Furthermore, the proposed framework was tested beyond simulations on practical scenarios, including real world map data such as the IIT Delhi campus, reinforcing its potential for real time, autonomous navigation in complex and unpredictable environments.