Abstract:Traditional Artificial Intelligence (AI) approaches in cybersecurity exhibit fundamental limitations: inadequate conceptual grounding leading to non-robustness against novel attacks; limited instructibility impeding analyst-guided adaptation; and misalignment with cybersecurity objectives. Neuro-Symbolic (NeSy) AI has emerged with the potential to revolutionize cybersecurity AI. However, there is no systematic understanding of this emerging approach. These hybrid systems address critical cybersecurity challenges by combining neural pattern recognition with symbolic reasoning, enabling enhanced threat understanding while introducing concerning autonomous offensive capabilities that reshape threat landscapes. In this survey, we systematically characterize this field by analyzing 127 publications spanning 2019-July 2025. We introduce a Grounding-Instructibility-Alignment (G-I-A) framework to evaluate these systems, focusing on both cyber defense and cyber offense across network security, malware analysis, and cyber operations. Our analysis shows advantages of multi-agent NeSy architectures and identifies critical implementation challenges including standardization gaps, computational complexity, and human-AI collaboration requirements that constrain deployment. We show that causal reasoning integration is the most transformative advancement, enabling proactive defense beyond correlation-based approaches. Our findings highlight dual-use implications where autonomous systems demonstrate substantial capabilities in zero-day exploitation while achieving significant cost reductions, altering threat dynamics. We provide insights and future research directions, emphasizing the urgent need for community-driven standardization frameworks and responsible development practices that ensure advancement serves defensive cybersecurity objectives while maintaining societal alignment.
Abstract:Retrieval-Augmented Generation (RAG) systems address factual inconsistencies in Large Language Models by grounding generation in external knowledge, yet they face a fundamental efficiency problem: simple queries consume computational resources equivalent to complex multi-hop reasoning tasks. We present SymRAG, a neuro-symbolic framework that introduces adaptive query routing based on real-time complexity and system load assessments. SymRAG dynamically selects symbolic, neural, or hybrid processing paths to align resource use with query demands. Evaluated on 2,000 queries from HotpotQA and DROP using Llama-3.2-3B and Mistral-7B models, SymRAG achieves 97.6--100.0% exact match accuracy with significantly lower CPU utilization (3.6--6.2%) and processing time (0.985--3.165s). Disabling adaptive logic results in 169--1151% increase in processing time, highlighting the framework's impact. These results underscore the potential of adaptive neuro-symbolic routing for scalable, sustainable AI systems.
Abstract:In this paper, we propose an Adaptive Neuro-Symbolic Learning Framework for digital twin technology called ``ANSR-DT." Our approach combines pattern recognition algorithms with reinforcement learning and symbolic reasoning to enable real-time learning and adaptive intelligence. This integration enhances the understanding of the environment and promotes continuous learning, leading to better and more effective decision-making in real-time for applications that require human-machine collaboration. We evaluated the \textit{ANSR-DT} framework for its ability to learn and adapt to dynamic patterns, observing significant improvements in decision accuracy, reliability, and interpretability when compared to existing state-of-the-art methods. However, challenges still exist in extracting and integrating symbolic rules in complex environments, which limits the full potential of our framework in heterogeneous settings. Moreover, our ongoing research aims to address this issue in the future by ensuring seamless integration of neural models at large. In addition, our open-source implementation promotes reproducibility and encourages future research to build on our foundational work.
Abstract:The escalating sophistication of Android malware poses significant challenges to traditional detection methods, necessitating innovative approaches that can efficiently identify and classify threats with high precision. This paper introduces a novel framework that synergistically integrates an attention-enhanced Multi-Layer Perceptron (MLP) with a Support Vector Machine (SVM) to make Android malware detection and classification more effective. By carefully analyzing a mere 47 features out of over 9,760 available in the comprehensive CCCS-CIC-AndMal-2020 dataset, our MLP-SVM model achieves an impressive accuracy over 99% in identifying malicious applications. The MLP, enhanced with an attention mechanism, focuses on the most discriminative features and further reduces the 47 features to only 14 components using Linear Discriminant Analysis (LDA). Despite this significant reduction in dimensionality, the SVM component, equipped with an RBF kernel, excels in mapping these components to a high-dimensional space, facilitating precise classification of malware into their respective families. Rigorous evaluations, encompassing accuracy, precision, recall, and F1-score metrics, confirm the superiority of our approach compared to existing state-of-the-art techniques. The proposed framework not only significantly reduces the computational complexity by leveraging a compact feature set but also exhibits resilience against the evolving Android malware landscape.
Abstract:Sign language is the only medium of communication for the hearing impaired and the deaf and dumb community. Communication with the general mass is thus always a challenge for this minority group. Especially in Bangla sign language (BdSL), there are 38 alphabets with some having nearly identical symbols. As a result, in BdSL recognition, the posture of hand is an important factor in addition to visual features extracted from traditional Convolutional Neural Network (CNN). In this paper, a novel architecture "Concatenated BdSL Network" is proposed which consists of a CNN based image network and a pose estimation network. While the image network gets the visual features, the relative positions of hand keypoints are taken by the pose estimation network to obtain the additional features to deal with the complexity of the BdSL symbols. A score of 91.51% was achieved by this novel approach in test set and the effectiveness of the additional pose estimation network is suggested by the experimental results.