Abstract:The proliferation of generative AI systems creates unprecedented opportunities for content creation while raising critical concerns about controllability, copyright infringement, and content provenance. Current generative models operate as "black boxes" with limited user control and lack built-in mechanisms to protect intellectual property or trace content origin. We propose a novel multi-agent framework that addresses these challenges through specialized agent roles and integrated watermarking. Our system orchestrates Director, Generator, Reviewer, Integration, and Protection agents to ensure user intent alignment while embedding digital provenance markers. We demonstrate feasibility through two case studies: creative content generation with iterative refinement and copyright protection for AI-generated art in commercial contexts. Preliminary feasibility evidence from prior work indicates up to 23\% improvement in semantic alignment and 95\% watermark recovery rates. This work contributes to responsible generative AI deployment, positioning multi-agent systems as a solution for trustworthy creative workflows in legal and commercial applications.
Abstract:The proliferation of Large Language Models (LLMs) has intensified concerns about manipulative or deceptive behaviors that can undermine user autonomy, trust, and well-being. Existing safety benchmarks predominantly rely on coarse binary labels and fail to capture the nuanced psychological and social mechanisms constituting manipulation. We introduce \textbf{DarkPatterns-LLM}, a comprehensive benchmark dataset and diagnostic framework for fine-grained assessment of manipulative content in LLM outputs across seven harm categories: Legal/Power, Psychological, Emotional, Physical, Autonomy, Economic, and Societal Harm. Our framework implements a four-layer analytical pipeline comprising Multi-Granular Detection (MGD), Multi-Scale Intent Analysis (MSIAN), Threat Harmonization Protocol (THP), and Deep Contextual Risk Alignment (DCRA). The dataset contains 401 meticulously curated examples with instruction-response pairs and expert annotations. Through evaluation of state-of-the-art models including GPT-4, Claude 3.5, and LLaMA-3-70B, we observe significant performance disparities (65.2\%--89.7\%) and consistent weaknesses in detecting autonomy-undermining patterns. DarkPatterns-LLM establishes the first standardized, multi-dimensional benchmark for manipulation detection in LLMs, offering actionable diagnostics toward more trustworthy AI systems.
Abstract:Large language models deployed in sensitive applications increasingly require the ability to unlearn specific knowledge, such as user requests, copyrighted materials, or outdated information, without retraining from scratch to ensure regulatory compliance, user privacy, and safety. This task, known as machine unlearning, aims to remove the influence of targeted data (forgetting) while maintaining performance on the remaining data (retention). A common approach is to formulate this as a multi-objective problem and reduce it to a single-objective problem via scalarization, where forgetting and retention losses are combined using a weighted sum. However, this often results in unstable training dynamics and degraded model utility due to conflicting gradient directions. To address these challenges, we propose OFMU, a penalty-based bi-level optimization framework that explicitly prioritizes forgetting while preserving retention through a hierarchical structure. Our method enforces forgetting via an inner maximization step that incorporates a similarity-aware penalty to decorrelate the gradients of the forget and retention objectives, and restores utility through an outer minimization step. To ensure scalability, we develop a two-loop algorithm with provable convergence guarantees under both convex and non-convex regimes. We further provide a rigorous theoretical analysis of convergence rates and show that our approach achieves better trade-offs between forgetting efficacy and model utility compared to prior methods. Extensive experiments across vision and language benchmarks demonstrate that OFMU consistently outperforms existing unlearning methods in both forgetting efficacy and retained utility.
Abstract:In real-world machine learning deployments, models must be continually updated, composed, and when required, selectively undone. However, existing approaches to model merging and continual learning often suffer from task interference, catastrophic forgetting, or lack of reversibility. We propose Modular Delta Merging with Orthogonal Constraints (MDM-OC), a novel framework that enables scalable, interference-free, and reversible composition of fine-tuned models. Each task-specific model is encoded as a delta from a shared base and projected into an orthogonal subspace to eliminate conflict. These projected deltas are then merged via gradient-based optimization to form a unified model that retains performance across tasks. Our approach supports continual integration of new models, structured unmerging for compliance such as GDPR requirements, and model stability via elastic weight consolidation and synthetic replay. Extensive experiments on vision and natural language processing benchmarks demonstrate that MDM-OC outperforms prior baselines in accuracy, backward transfer, and unmerge fidelity, while remaining memory-efficient and computationally tractable. This framework offers a principled solution for modular and compliant AI system design.