Abstract:Large language models deployed in sensitive applications increasingly require the ability to unlearn specific knowledge, such as user requests, copyrighted materials, or outdated information, without retraining from scratch to ensure regulatory compliance, user privacy, and safety. This task, known as machine unlearning, aims to remove the influence of targeted data (forgetting) while maintaining performance on the remaining data (retention). A common approach is to formulate this as a multi-objective problem and reduce it to a single-objective problem via scalarization, where forgetting and retention losses are combined using a weighted sum. However, this often results in unstable training dynamics and degraded model utility due to conflicting gradient directions. To address these challenges, we propose OFMU, a penalty-based bi-level optimization framework that explicitly prioritizes forgetting while preserving retention through a hierarchical structure. Our method enforces forgetting via an inner maximization step that incorporates a similarity-aware penalty to decorrelate the gradients of the forget and retention objectives, and restores utility through an outer minimization step. To ensure scalability, we develop a two-loop algorithm with provable convergence guarantees under both convex and non-convex regimes. We further provide a rigorous theoretical analysis of convergence rates and show that our approach achieves better trade-offs between forgetting efficacy and model utility compared to prior methods. Extensive experiments across vision and language benchmarks demonstrate that OFMU consistently outperforms existing unlearning methods in both forgetting efficacy and retained utility.
Abstract:In real-world machine learning deployments, models must be continually updated, composed, and when required, selectively undone. However, existing approaches to model merging and continual learning often suffer from task interference, catastrophic forgetting, or lack of reversibility. We propose Modular Delta Merging with Orthogonal Constraints (MDM-OC), a novel framework that enables scalable, interference-free, and reversible composition of fine-tuned models. Each task-specific model is encoded as a delta from a shared base and projected into an orthogonal subspace to eliminate conflict. These projected deltas are then merged via gradient-based optimization to form a unified model that retains performance across tasks. Our approach supports continual integration of new models, structured unmerging for compliance such as GDPR requirements, and model stability via elastic weight consolidation and synthetic replay. Extensive experiments on vision and natural language processing benchmarks demonstrate that MDM-OC outperforms prior baselines in accuracy, backward transfer, and unmerge fidelity, while remaining memory-efficient and computationally tractable. This framework offers a principled solution for modular and compliant AI system design.