Abstract:For a controllable linear time-varying (LTV) pair $(\boldsymbol{A}_t,\boldsymbol{B}_t)$ and $\boldsymbol{Q}_{t}$ positive semidefinite, we derive the Markov kernel for the It\^{o} diffusion ${\mathrm{d}}\boldsymbol{x}_{t}=\boldsymbol{A}_{t}\boldsymbol{x}_t {\mathrm{d}} t + \sqrt{2}\boldsymbol{B}_{t}{\mathrm{d}}\boldsymbol{w}_{t}$ with an accompanying killing of probability mass at rate $\frac{1}{2}\boldsymbol{x}^{\top}\boldsymbol{Q}_{t}\boldsymbol{x}$. This Markov kernel is the Green's function for an associated linear reaction-advection-diffusion partial differential equation. Our result generalizes the recently derived kernel for the special case $\left(\boldsymbol{A}_t,\boldsymbol{B}_t\right)=\left(\boldsymbol{0},\boldsymbol{I}\right)$, and depends on the solution of an associated Riccati matrix ODE. A consequence of this result is that the linear quadratic non-Gaussian Schr\"{o}dinger bridge is exactly solvable. This means that the problem of steering a controlled LTV diffusion from a given non-Gaussian distribution to another over a fixed deadline while minimizing an expected quadratic cost can be solved using dynamic Sinkhorn recursions performed with the derived kernel. Our derivation for the $\left(\boldsymbol{A}_t,\boldsymbol{B}_t,\boldsymbol{Q}_t\right)$-parametrized kernel pursues a new idea that relies on finding a state-time dependent distance-like functional given by the solution of a deterministic optimal control problem. This technique breaks away from existing methods, such as generalizing Hermite polynomials or Weyl calculus, which have seen limited success in the reaction-diffusion context. Our technique uncovers a new connection between Markov kernels, distances, and optimal control. This connection is of interest beyond its immediate application in solving the linear quadratic Schr\"{o}dinger bridge problem.
Abstract:For a given ground cost, approximating the Monge optimal transport map that pushes forward a given probability measure onto another has become a staple in several modern machine learning algorithms. The fourth-order Ma-Trudinger-Wang (MTW) tensor associated with this ground cost function provides a notion of curvature in optimal transport. The non-negativity of this tensor plays a crucial role for establishing continuity for the Monge optimal transport map. It is, however, generally difficult to analytically verify this condition for any given ground cost. To expand the class of cost functions for which MTW non-negativity can be verified, we propose a provably correct computational approach which provides certificates of non-negativity for the MTW tensor using Sum-of-Squares (SOS) programming. We further show that our SOS technique can also be used to compute an inner approximation of the region where MTW non-negativity holds. We apply our proposed SOS programming method to several practical ground cost functions to approximate the regions of regularity of their corresponding optimal transport maps.