Abstract:This paper presents a novel approach to efficiently parameterize and estimate the state of a hanging tether for path and trajectory planning of a UGV tied to a UAV in a marsupial configuration. Most implementations in the state of the art assume a taut tether or make use of the catenary curve to model the shape of the hanging tether. The catenary model is complex to compute and must be instantiated thousands of times during the planning process, becoming a time-consuming task, while the taut tether assumption simplifies the problem, but might overly restrict the movement of the platforms. In order to accelerate the planning process, this paper proposes defining an analytical model to efficiently compute the hanging tether state, and a method to get a tether state parameterization free of collisions. We exploit the existing similarity between the catenary and parabola curves to derive analytical expressions of the tether state.
Abstract:This paper addresses the problem of trajectory planning in a marsupial robotic system consisting of an unmanned aerial vehicle (UAV) linked to an unmanned ground vehicle (UGV) through a non-taut tether that has a controllable length. The objective is to determine a synchronized collision-free trajectory for the three marsupial system agents: UAV, UGV, and tether. First, we present a path planning solution based on optimal Rapidly exploring Random Trees (RRT*) that takes into account constraints related to the positions of UAV, UGV, tether and the 3D environment. The specialization of the main RRT* methods allows us to obtain feasible solutions in short times. Then, the paper presents a trajectory planner based on non-linear least squares. The optimizer takes into account aspects not considered in the path planning, like temporal constraints of the motion that impose limits on the velocities and accelerations of the robots. Results from simulated scenarios demonstrate that the approach is able to generate obstacle-free and smooth trajectories for the UAV, UGV, and tether.