Abstract:In recent years, large language models (LLMs) have achieved remarkable success in natural language processing (NLP). LLMs require an extreme amount of parameters to attain high performance. As models grow into the trillion-parameter range, computational and memory costs increase significantly. This makes it difficult for many researchers to access the resources needed to train or apply these models. Optimizing LLM performance involves two main approaches: fine-tuning pre-trained models for specific tasks to achieve state-of-the-art performance, and reducing costs or improving training time while maintaining similar performance. This paper presents a systematic literature review (SLR) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. We reviewed 65 publications out of 983 from 2017 to December 2023, retrieved from 5 databases. The study presents methods to optimize and accelerate LLMs while achieving cutting-edge results without sacrificing accuracy. We begin with an overview of the development of language modeling, followed by a detailed explanation of commonly used frameworks and libraries, and a taxonomy for improving and speeding up LLMs based on three classes: LLM training, LLM inference, and system serving. We then delve into recent optimization and acceleration strategies such as training optimization, hardware optimization, scalability and reliability, accompanied by the taxonomy and categorization of these strategies. Finally, we provide an in-depth comparison of each class and strategy, with two case studies on optimizing model training and enhancing inference efficiency. These case studies showcase practical approaches to address LLM resource limitations while maintaining performance.
Abstract:We present a model to reconstruct partially visible objects. The model takes a mask as an input, which we call weighted mask. The mask is utilized by gated convolutions to assign more weight to the visible pixels of the occluded instance compared to the background, while ignoring the features of the invisible pixels. By drawing more attention from the visible region, our model can predict the invisible patch more effectively than the baseline models, especially in instances with uniform texture. The model is trained on COCOA dataset and two subsets of it in a self-supervised manner. The results demonstrate that our model generates higher quality and more texture-rich outputs compared to baseline models. Code is available at: https://github.com/KaziwaSaleh/mask-guided.
Abstract:The significant power of deep learning networks has led to enormous development in object detection. Over the last few years, object detector frameworks have achieved tremendous success in both accuracy and efficiency. However, their ability is far from that of human beings due to several factors, occlusion being one of them. Since occlusion can happen in various locations, scale, and ratio, it is very difficult to handle. In this paper, we address the challenges in occlusion handling in generic object detection in both outdoor and indoor scenes, then we refer to the recent works that have been carried out to overcome these challenges. Finally, we discuss some possible future directions of research.