Abstract:We present a model to reconstruct partially visible objects. The model takes a mask as an input, which we call weighted mask. The mask is utilized by gated convolutions to assign more weight to the visible pixels of the occluded instance compared to the background, while ignoring the features of the invisible pixels. By drawing more attention from the visible region, our model can predict the invisible patch more effectively than the baseline models, especially in instances with uniform texture. The model is trained on COCOA dataset and two subsets of it in a self-supervised manner. The results demonstrate that our model generates higher quality and more texture-rich outputs compared to baseline models. Code is available at: https://github.com/KaziwaSaleh/mask-guided.
Abstract:Occlusion handling is one of the challenges of object detection and segmentation, and scene understanding. Because objects appear differently when they are occluded in varying degree, angle, and locations. Therefore, determining the existence of occlusion between objects and their order in a scene is a fundamental requirement for semantic understanding. Existing works mostly use deep learning based models to retrieve the order of the instances in an image or for occlusion detection. This requires labelled occluded data and it is time consuming. In this paper, we propose a simpler and faster method that can perform both operations without any training and only requires the modal segmentation masks. For occlusion detection, instead of scanning the two objects entirely, we only focus on the intersected area between their bounding boxes. Similarly, we use the segmentation mask inside the same area to recover the depth-ordering. When tested on COCOA dataset, our method achieves +8% and +5% more accuracy than the baselines in order recovery and occlusion detection respectively.
Abstract:The significant power of deep learning networks has led to enormous development in object detection. Over the last few years, object detector frameworks have achieved tremendous success in both accuracy and efficiency. However, their ability is far from that of human beings due to several factors, occlusion being one of them. Since occlusion can happen in various locations, scale, and ratio, it is very difficult to handle. In this paper, we address the challenges in occlusion handling in generic object detection in both outdoor and indoor scenes, then we refer to the recent works that have been carried out to overcome these challenges. Finally, we discuss some possible future directions of research.