Abstract:A central goal in online learning is to achieve adaptivity to unknown problem characteristics, such as environmental changes captured by gradient variation (GV), function curvature (universal online learning, UOL), and gradient scales (Lipschitz adaptivity, LA). Simultaneously achieving these with optimal performance is a major challenge, partly due to limitations in algorithms for prediction with expert advice. These algorithms often serve as meta-algorithms in online ensemble frameworks, and their sub-optimality hinders overall UOL performance. Specifically, existing algorithms addressing the ``impossible tuning'' issue incur an excess $\sqrt{\log T}$ factor in their regret bound compared to the lower bound. To solve this problem, we propose a novel optimistic online mirror descent algorithm with an auxiliary initial round using large learning rates. This design enables a refined analysis where a generated negative term cancels the gap-related factor, resolving the impossible tuning issue up to $\log\log T$ factors. Leveraging our improved algorithm as a meta-algorithm, we develop the first UOL algorithm that simultaneously achieves state-of-the-art GV bounds and LA under standard assumptions. Our UOL result overcomes key limitations of prior works, notably resolving the conflict between LA mechanisms and regret analysis for GV bounds -- an open problem highlighted by Xie et al.
Abstract:Model update is a crucial process in the operation of ML/AI systems. While updating a model generally enhances the average prediction performance, it also significantly impacts the explanations of predictions. In real-world applications, even minor changes in explanations can have detrimental consequences. To tackle this issue, this paper introduces BCX, a quantitative metric that evaluates the backward compatibility of feature attribution explanations between pre- and post-update models. BCX utilizes practical agreement metrics to calculate the average agreement between the explanations of pre- and post-update models, specifically among samples on which both models accurately predict. In addition, we propose BCXR, a BCX-aware model training method by designing surrogate losses which theoretically lower bounds agreement scores. Furthermore, we present a universal variant of BCXR that improves all agreement metrics, utilizing L2 distance among the explanations of the models. To validate our approach, we conducted experiments on eight real-world datasets, demonstrating that BCXR achieves superior trade-offs between predictive performances and BCX scores, showcasing the effectiveness of our BCXR methods.