Abstract:Recently, autoregressive (AR) models have shown strong potential in image generation, offering better scalability and easier integration with unified multi-modal systems compared to diffusion-based methods. However, extending AR models to general image editing remains challenging due to weak and inefficient conditioning, often leading to poor instruction adherence and visual artifacts. To address this, we propose SCAR, a Semantic-Context-driven method for Autoregressive models. SCAR introduces two key components: Compressed Semantic Prefilling, which encodes high-level semantics into a compact and efficient prefix, and Semantic Alignment Guidance, which aligns the last visual hidden states with target semantics during autoregressive decoding to enhance instruction fidelity. Unlike decoding-stage injection methods, SCAR builds upon the flexibility and generality of vector-quantized-based prefilling while overcoming its semantic limitations and high cost. It generalizes across both next-token and next-set AR paradigms with minimal architectural changes. SCAR achieves superior visual fidelity and semantic alignment on both instruction editing and controllable generation benchmarks, outperforming prior AR-based methods while maintaining controllability. All code will be released.




Abstract:Node-based programming languages are increasingly popular in media arts coding domains. These languages are designed to be accessible to users with limited coding experience, allowing them to achieve creative output without an extensive programming background. Using LLM-based code generation to further lower the barrier to creative output is an exciting opportunity. However, the best strategy for code generation for visual node-based programming languages is still an open question. In particular, such languages have multiple levels of representation in text, each of which may be used for code generation. In this work, we explore the performance of LLM code generation in audio programming tasks in visual programming languages at multiple levels of representation. We explore code generation through metaprogramming code representations for these languages (i.e., coding the language using a different high-level text-based programming language), as well as through direct node generation with JSON. We evaluate code generated in this way for two visual languages for audio programming on a benchmark set of coding problems. We measure both correctness and complexity of the generated code. We find that metaprogramming results in more semantically correct generated code, given that the code is well-formed (i.e., is syntactically correct and runs). We also find that prompting for richer metaprogramming using randomness and loops led to more complex code.