Abstract:Diffusion policies have recently emerged as a powerful class of visuomotor controllers for robot manipulation, offering stable training and expressive multi-modal action modeling. However, existing approaches typically treat action generation as an unconstrained denoising process, ignoring valuable a priori knowledge about geometry and control structure. In this work, we propose the Adaptive Diffusion Policy (ADP), a test-time adaptation method that introduces two key inductive biases into the diffusion. First, we embed a geometric manifold constraint that aligns denoising updates with task-relevant subspaces, leveraging the fact that the relative pose between the end-effector and target scene provides a natural gradient direction, and guiding denoising along the geodesic path of the manipulation manifold. Then, to reduce unnecessary exploration and accelerate convergence, we propose an analytically guided initialization: rather than sampling from an uninformative prior, we compute a rough registration between the gripper and target scenes to propose a structured initial noisy action. ADP is compatible with pre-trained diffusion policies and requires no retraining, enabling test-time adaptation that tailors the policy to specific tasks, thereby enhancing generalization across novel tasks and environments. Experiments on RLBench, CALVIN, and real-world dataset show that ADPro, an implementation of ADP, improves success rates, generalization, and sampling efficiency, achieving up to 25% faster execution and 9% points over strong diffusion baselines.
Abstract:Shape-from-Template (SfT) refers to the class of methods that reconstruct the 3D shape of a deforming object from images/videos using a 3D template. Traditional SfT methods require point correspondences between images and the texture of the 3D template in order to reconstruct 3D shapes from images/videos in real time. Their performance severely degrades when encountered with severe occlusions in the images because of the unavailability of correspondences. In contrast, modern SfT methods use a correspondence-free approach by incorporating deep neural networks to reconstruct 3D objects, thus requiring huge amounts of data for supervision. Recent advances use a fully unsupervised or self-supervised approach by combining differentiable physics and graphics to deform 3D template to match input images. In this paper, we propose an unsupervised SfT which uses only image observations: color features, gradients and silhouettes along with a mesh inextensibility constraint to reconstruct at a $400\times$ faster pace than (best-performing) unsupervised SfT. Moreover, when it comes to generating finer details and severe occlusions, our method outperforms the existing methodologies by a large margin. Code is available at https://github.com/dvttran/nsft.
Abstract:Recent neural, physics-based modeling of garment deformations allows faster and visually aesthetic results as opposed to the existing methods. Material-specific parameters are used by the formulation to control the garment inextensibility. This delivers unrealistic results with physically implausible stretching. Oftentimes, the draped garment is pushed inside the body which is either corrected by an expensive post-processing, thus adding to further inconsistent stretching; or by deploying a separate training regime for each body type, restricting its scalability. Additionally, the flawed skinning process deployed by existing methods produces incorrect results on loose garments. In this paper, we introduce a geometrical constraint to the existing formulation that is collision-aware and imposes garment inextensibility wherever possible. Thus, we obtain realistic results where draped clothes stretch only while covering bigger body regions. Furthermore, we propose a geometry-aware garment skinning method by defining a body-garment closeness measure which works for all garment types, especially the loose ones.