Abstract:Quadruped robots are increasingly deployed in unstructured environments. Safe locomotion in these settings requires long-horizon goal progress, passability over uneven terrain and static constraints, and collision avoidance against high-speed dynamic obstacles. A single system cannot fully satisfy all three objectives simultaneously: planning-based decisions can be too slow, while purely reactive decisions can sacrifice goal progress and passability. To resolve this conflict, we propose UEREBot (Unstructured-Environment Reflexive Evasion Robot), a hierarchical framework that separates slow planning from instantaneous reflexive evasion and coordinates them during execution. UEREBot formulates the task as a constrained optimal control problem blueprint. It adopts a spatial--temporal planner that provides reference guidance toward the goal and threat signals. It then uses a threat-aware handoff to fuse navigation and reflex actions into a nominal command, and a control barrier function shield as a final execution safeguard. We evaluate UEREBot in Isaac Lab simulation and deploy it on a Unitree Go2 quadruped equipped with onboard perception. Across diverse environments with complex static structure and high-speed dynamic obstacles, UEREBot achieves higher avoidance success and more stable locomotion while maintaining goal progress than representative baselines, demonstrating improved safety--progress trade-offs.