Abstract:The worldwide economy and environmental sustainability depend on eff icient and reliable supply chains, in which container shipping plays a crucial role as an environmentally friendly mode of transport. Liner shipping companies seek to improve operational efficiency by solving the stowage planning problem. Due to many complex combinatorial aspects, stowage planning is challenging and often decomposed into two NP-hard subproblems: master and slot planning. This article proposes AI2STOW, an end-to-end deep reinforcement learning model with feasibility projection and an action mask to create master plans under demand uncertainty with global objectives and constraints, including paired block stowage patterms. Our experimental results demonstrate that AI2STOW outperforms baseline methods from reinforcement learning and stochastic programming in objective performance and computational efficiency, based on simulated instances reflecting the scale of realistic vessels and operational planning horizons.
Abstract:Reinforcement learning (RL) has shown promise in solving various combinatorial optimization problems. However, conventional RL faces challenges when dealing with real-world constraints, especially when action space feasibility is explicit and dependent on the corresponding state or trajectory. In this work, we focus on using RL in container shipping, often considered the cornerstone of global trade, by dealing with the critical challenge of master stowage planning. The main objective is to maximize cargo revenue and minimize operational costs while navigating demand uncertainty and various complex operational constraints, namely vessel capacity and stability, which must be dynamically updated along the vessel's voyage. To address this problem, we implement a deep reinforcement learning framework with feasibility projection to solve the master stowage planning problem (MPP) under demand uncertainty. The experimental results show that our architecture efficiently finds adaptive, feasible solutions for this multi-stage stochastic optimization problem, outperforming traditional mixed-integer programming and RL with feasibility regularization. Our AI-driven decision-support policy enables adaptive and feasible planning under uncertainty, optimizing operational efficiency and capacity utilization while contributing to sustainable and resilient global supply chains.