Abstract:Physics-informed neural networks (PINNs) represent a new paradigm for solving partial differential equations (PDEs) by integrating physical laws into the learning process of neural networks. However, despite their foundational role, the hidden irreversibility implied by the Second Law of Thermodynamics is often neglected during training, leading to unphysical solutions or even training failures in conventional PINNs. In this paper, we identify this critical gap and introduce a simple, generalized, yet robust irreversibility-regularized strategy that enforces hidden physical laws as soft constraints during training. This approach ensures that the learned solutions consistently respect the intrinsic one-way nature of irreversible physical processes. Across a wide range of benchmarks spanning traveling wave propagation, steady combustion, ice melting, corrosion evolution, and crack propagation, we demonstrate that our regularization scheme reduces predictive errors by more than an order of magnitude, while requiring only minimal modification to existing PINN frameworks. We believe that the proposed framework is broadly applicable to a wide class of PDE-governed physical systems and will have significant impact within the scientific machine learning community.
Abstract:Physics-informed neural networks have shown significant potential in solving partial differential equations (PDEs) across diverse scientific fields. However, their performance often deteriorates when addressing PDEs with intricate and strongly coupled solutions. In this work, we present a novel Sharp-PINN framework to tackle complex phase field corrosion problems. Instead of minimizing all governing PDE residuals simultaneously, the Sharp-PINNs introduce a staggered training scheme that alternately minimizes the residuals of Allen-Cahn and Cahn-Hilliard equations, which govern the corrosion system. To further enhance its efficiency and accuracy, we design an advanced neural network architecture that integrates random Fourier features as coordinate embeddings, employs a modified multi-layer perceptron as the primary backbone, and enforces hard constraints in the output layer. This framework is benchmarked through simulations of corrosion problems with multiple pits, where the staggered training scheme and network architecture significantly improve both the efficiency and accuracy of PINNs. Moreover, in three-dimensional cases, our approach is 5-10 times faster than traditional finite element methods while maintaining competitive accuracy, demonstrating its potential for real-world engineering applications in corrosion prediction.