Abstract:Coherence in language requires the brain to satisfy two competing temporal demands: gradual accumulation of meaning across extended context and rapid reconfiguration of representations at event boundaries. Despite their centrality to language and thought, how these processes are implemented in the human brain during naturalistic listening remains unclear. Here, we tested whether these two processes can be captured by annotation-free drift and shift signals and whether their neural expression dissociates across large-scale cortical systems. These signals were derived from a large language model (LLM) and formalized contextual drift and event shifts directly from the narrative input. To enable high-precision voxelwise encoding models with stable parameter estimates, we densely sampled one healthy adult across more than 7 hours of listening to thirteen crime stories while collecting ultra high-field (7T) BOLD data. We then modeled the feature-informed hemodynamic response using a regularized encoding framework validated on independent stories. Drift predictions were prevalent in default-mode network hubs, whereas shift predictions were evident bilaterally in the primary auditory cortex and language association cortex. Furthermore, activity in default-mode and parietal networks was best explained by a signal capturing how meaning accumulates and gradually fades over the course of the narrative. Together, these findings show that coherence during language comprehension is implemented through dissociable neural regimes of slow contextual integration and rapid event-driven reconfiguration, offering a mechanistic entry point for understanding disturbances of language coherence in psychiatric disorders.
Abstract:The introduction of large language models and other influential developments in AI-based language processing have led to an evolution in the methods available to quantitatively analyse language data. With the resultant growth of attention on language processing, significant challenges have emerged, including the lack of standardisation in organising and sharing linguistic data and the absence of standardised and reproducible processing methodologies. Striving for future standardisation, we first propose the Language Processing Data Structure (LPDS), a data structure inspired by the Brain Imaging Data Structure (BIDS), a widely adopted standard for handling neuroscience data. It provides a folder structure and file naming conventions for linguistic research. Second, we introduce pelican nlp, a modular and extensible Python package designed to enable streamlined language processing, from initial data cleaning and task-specific preprocessing to the extraction of sophisticated linguistic and acoustic features, such as semantic embeddings and prosodic metrics. The entire processing workflow can be specified within a single, shareable configuration file, which pelican nlp then executes on LPDS-formatted data. Depending on the specifications, the reproducible output can consist of preprocessed language data or standardised extraction of both linguistic and acoustic features and corresponding result aggregations. LPDS and pelican nlp collectively offer an end-to-end processing pipeline for linguistic data, designed to ensure methodological transparency and enhance reproducibility.