Abstract:Multi-embodiment grasping focuses on developing approaches that exhibit generalist behavior across diverse gripper designs. Existing methods often learn the kinematic structure of the robot implicitly and face challenges due to the difficulty of sourcing the required large-scale data. In this work, we present a data-efficient, flow-based, equivariant grasp synthesis architecture that can handle different gripper types with variable degrees of freedom and successfully exploit the underlying kinematic model, deducing all necessary information solely from the gripper and scene geometry. Unlike previous equivariant grasping methods, we translated all modules from the ground up to JAX and provide a model with batching capabilities over scenes, grippers, and grasps, resulting in smoother learning, improved performance and faster inference time. Our dataset encompasses grippers ranging from humanoid hands to parallel yaw grippers and includes 25,000 scenes and 20 million grasps.
Abstract:Grasping is a fundamental skill in robotics with diverse applications across medical, industrial, and domestic domains. However, current approaches for predicting valid grasps are often tailored to specific grippers, limiting their applicability when gripper designs change. To address this limitation, we explore the transfer of grasping strategies between various gripper designs, enabling the use of data from diverse sources. In this work, we present an approach based on equivariant diffusion that facilitates gripper-agnostic encoding of scenes containing graspable objects and gripper-aware decoding of grasp poses by integrating gripper geometry into the model. We also develop a dataset generation framework that produces cluttered scenes with variable-sized object heaps, improving the training of grasp synthesis methods. Experimental evaluation on diverse object datasets demonstrates the generalizability of our approach across gripper architectures, ranging from simple parallel-jaw grippers to humanoid hands, outperforming both single-gripper and multi-gripper state-of-the-art methods.