Abstract:Supporting learners' understanding of taught skills in online settings is a longstanding challenge. While exercises and chat-based agents can evaluate understanding in limited contexts, this challenge is magnified when learners seek explanations that delve into procedural knowledge (how things are done) and reasoning (why things happen). We hypothesize that an intelligent agent's ability to understand and explain learners' questions about skills can be significantly enhanced using the TMK (Task-Method-Knowledge) model, a Knowledge-based AI framework. We introduce Ivy, an intelligent agent that leverages an LLM and iterative refinement techniques to generate explanations that embody teleological, causal, and compositional principles. Our initial evaluation demonstrates that this approach goes beyond the typical shallow responses produced by an agent with access to unstructured text, thereby substantially improving the depth and relevance of feedback. This can potentially ensure learners develop a comprehensive understanding of skills crucial for effective problem-solving in online environments.
Abstract:In online learning, the ability to provide quick and accurate feedback to learners is crucial. In skill-based learning, learners need to understand the underlying concepts and mechanisms of a skill to be able to apply it effectively. While videos are a common tool in online learning, they cannot comprehend or assess the skills being taught. Additionally, while Generative AI methods are effective in searching and retrieving answers from a text corpus, it remains unclear whether these methods exhibit any true understanding. This limits their ability to provide explanations of skills or help with problem-solving. This paper proposes a novel approach that merges Cognitive AI and Generative AI to address these challenges. We employ a structured knowledge representation, the TMK (Task-Method-Knowledge) model, to encode skills taught in an online Knowledge-based AI course. Leveraging techniques such as Large Language Models, Chain-of-Thought, and Iterative Refinement, we outline a framework for generating reasoned explanations in response to learners' questions about skills.