Abstract:The integration of service-oriented architectures (SOA) with function offloading for distributed, intelligent transportation systems (ITS) offers the opportunity for connected autonomous vehicles (CAVs) to extend their locally available services. One major goal of offloading a subset of functions in the processing chain of a CAV to remote devices is to reduce the overall computational complexity on the CAV. The extension of using remote services, however, requires careful safety analysis, since the remotely created data are corrupted more easily, e.g., through an attacker on the remote device or by intercepting the wireless transmission. To tackle this problem, we first analyze the concept of SOA for distributed environments. From this, we derive a safety framework that validates the reliability of remote services and the data received locally. Since it is possible for the autonomous driving task to offload multiple different services, we propose a specific multi-staged framework for safety analysis dependent on the service composition of local and remote services. For efficiency reasons, we directly include the multi-staged framework for safety analysis in our service-oriented function offloading framework (SOFOF) that we have proposed in earlier work. The evaluation compares the performance of the extended framework considering computational complexity, with energy savings being a major motivation for function offloading, and its capability to detect data from corrupted remote services.
Abstract:Function offloading is a promising solution to address limitations concerning computational capacity and available energy of Connected Automated Vehicles~(CAVs) or other autonomous robots by distributing computational tasks between local and remote computing devices in form of distributed services. This paper presents a generic function offloading framework that can be used to offload an arbitrary set of computational tasks with a focus on autonomous driving. To provide flexibility, the function offloading framework is designed to incorporate different offloading decision making algorithms and quality of service~(QoS) requirements that can be adjusted to different scenarios or the objectives of the CAVs. With a focus on the applicability, we propose an efficient location-based approach, where the decision whether tasks are processed locally or remotely depends on the location of the CAV. We apply the proposed framework on the use case of service-oriented trajectory planning, where we offload the trajectory planning task of CAVs to a Multi-Access Edge Computing~(MEC) server. The evaluation is conducted in both simulation and real-world application. It demonstrates the potential of the function offloading framework to guarantee the QoS for trajectory planning while improving the computational efficiency of the CAVs. Moreover, the simulation results also show the adaptability of the framework to diverse scenarios involving simultaneous offloading requests from multiple CAVs.