Abstract:The Industrial Internet of Things (IIoT) integrates intelligent sensing, communication, and analytics into industrial environments, including manufacturing, energy, and critical infrastructure. While IIoT enables predictive maintenance and cross-site optimization of modern industrial control systems, such as those in manufacturing and energy, it also introduces significant privacy and confidentiality risks due to the sensitivity of operational data. Contrastive learning, a self-supervised representation learning paradigm, has recently emerged as a promising approach for privacy-preserving analytics by reducing reliance on labeled data and raw data sharing. Although contrastive learning-based privacy-preserving techniques have been explored in the Internet of Things (IoT) domain, this paper offers a comprehensive review of these techniques specifically for privacy preservation in Industrial Internet of Things (IIoT) systems. It emphasizes the unique characteristics of industrial data, system architectures, and various application scenarios. Additionally, the paper discusses solutions and open challenges and outlines future research directions.
Abstract:Contrastive learning has become a leading self- supervised approach to representation learning across domains, including vision, multimodal settings, graphs, and federated learning. However, recent studies have shown that contrastive learning is susceptible to backdoor and data poisoning attacks. In these attacks, adversaries can manipulate pretraining data or model updates to insert hidden malicious behavior. This paper offers a thorough and comparative review of backdoor attacks in contrastive learning. It analyzes threat models, attack methods, target domains, and available defenses. We summarize recent advancements in this area, underline the specific vulnerabilities inherent to contrastive learning, and discuss the challenges and future research directions. Our findings have significant implications for the secure deployment of systems in industrial and distributed environments.