Abstract:Reservoir computing (RC) has attracted attention as an efficient recurrent neural network architecture due to its simplified training, requiring only its last perceptron readout layer to be trained. When implemented with memristors, RC systems benefit from their dynamic properties, which make them ideal for reservoir construction. However, achieving high performance in memristor-based RC remains challenging, as it critically depends on the input preprocessing method and reservoir size. Despite growing interest, a comprehensive evaluation that quantifies the impact of these factors is still lacking. This paper systematically compares various preprocessing methods for memristive RC systems, assessing their effects on accuracy and energy consumption. We also propose a parity-based preprocessing method that improves accuracy by 2-6% while requiring only a modest increase in device count compared to other methods. Our findings highlight the importance of informed preprocessing strategies to improve the efficiency and scalability of memristive RC systems.
Abstract:Volatile memristors have recently gained popularity as promising devices for neuromorphic circuits, capable of mimicking the leaky function of neurons and offering advantages over capacitor-based circuits in terms of power dissipation and area. Additionally, volatile memristors are useful as selector devices and for hardware security circuits such as physical unclonable functions. To facilitate the design and simulation of circuits, a compact behavioral model is essential. This paper proposes V-VTEAM, a compact, simple, general, and flexible behavioral model for volatile memristors, inspired by the VTEAM nonvolatile memristor model and developed in MATLAB. The validity of the model is demonstrated by fitting it to an ion drift/diffusion-based Ag/SiOx/C/W volatile memristor, achieving a relative root mean error square of 4.5%.