Abstract:This work presents a novel graph neural network (GNN) architecture, the Feature-specific Interpretable Graph Neural Network (FIGNN), designed to enhance the interpretability of deep learning surrogate models defined on unstructured grids in scientific applications. Traditional GNNs often obscure the distinct spatial influences of different features in multivariate prediction tasks. FIGNN addresses this limitation by introducing a feature-specific pooling strategy, which enables independent attribution of spatial importance for each predicted variable. Additionally, a mask-based regularization term is incorporated into the training objective to explicitly encourage alignment between interpretability and predictive error, promoting localized attribution of model performance. The method is evaluated for surrogate modeling of two physically distinct systems: the SPEEDY atmospheric circulation model and the backward-facing step (BFS) fluid dynamics benchmark. Results demonstrate that FIGNN achieves competitive predictive performance while revealing physically meaningful spatial patterns unique to each feature. Analysis of rollout stability, feature-wise error budgets, and spatial mask overlays confirm the utility of FIGNN as a general-purpose framework for interpretable surrogate modeling in complex physical domains.
Abstract:This study presents novel predictive models using Graph Neural Networks (GNNs) for simulating thermal dynamics in Laser Powder Bed Fusion (L-PBF) processes. By developing and validating Single-Laser GNN (SL-GNN) and Multi-Laser GNN (ML-GNN) surrogates, the research introduces a scalable data-driven approach that learns fundamental physics from small-scale Finite Element Analysis (FEA) simulations and applies them to larger domains. Achieving a Mean Absolute Percentage Error (MAPE) of 3.77% with the baseline SL-GNN model, GNNs effectively learn from high-resolution simulations and generalize well across larger geometries. The proposed models capture the complexity of the heat transfer process in L-PBF while significantly reducing computational costs. For example, a thermomechanical simulation for a 2 mm x 2 mm domain typically requires about 4 hours, whereas the SL-GNN model can predict thermal distributions almost instantly. Calibrating models to larger domains enhances predictive performance, with significant drops in MAPE for 3 mm x 3 mm and 4 mm x 4 mm domains, highlighting the scalability and efficiency of this approach. Additionally, models show a decreasing trend in Root Mean Square Error (RMSE) when tuned to larger domains, suggesting potential for becoming geometry-agnostic. The interaction of multiple lasers complicates heat transfer, necessitating larger model architectures and advanced feature engineering. Using hyperparameters from Gaussian process-based Bayesian optimization, the best ML-GNN model demonstrates a 46.4% improvement in MAPE over the baseline ML-GNN model. In summary, this approach enables more efficient and flexible predictive modeling in L-PBF additive manufacturing.