Abstract:We propose a new deep architecture for person re-identification (re-id). While re-id has seen much recent progress, spatial localization and view-invariant representation learning for robust cross-view matching remain key, unsolved problems. We address these questions by means of a new attention-driven Siamese learning architecture, called the Consistent Attentive Siamese Network. Our key innovations compared to existing, competing methods include (a) a flexible framework design that produces attention with only identity labels as supervision, (b) explicit mechanisms to enforce attention consistency among images of the same person, and (c) a new Siamese framework that integrates attention and attention consistency, producing principled supervisory signals as well as the first mechanism that can explain the reasoning behind the Siamese framework's predictions. We conduct extensive evaluations on the CUHK03-NP, DukeMTMC-ReID, and Market-1501 datasets, and establish a new state of the art, with our proposed method resulting in mAP performance improvements of 6.4%, 4.2%, and 1.2% respectively.
Abstract:Designing real-world person re-identification (re-id) systems requires attention to operational aspects not typically considered in academic research. Typically, the probe image or image sequence is matched to a gallery set with a fixed candidate list. On the other hand, in real-world applications of re-id, we would search for a person of interest in a gallery set that is continuously populated by new candidates over time. A key question of interest for the operator of such a system is: how long is a correct match to a probe likely to remain in a rank-k shortlist of candidates? In this paper, we propose to distill this information into what we call a Rank Persistence Curve (RPC), which unlike a conventional cumulative match characteristic (CMC) curve helps directly compare the temporal performance of different re-id algorithms. To carefully illustrate the concept, we collected a new multi-shot person re-id dataset called RPIfield. The RPIfield dataset is constructed using a network of 12 cameras with 112 explicitly time-stamped actor paths among about 4000 distractors. We then evaluate the temporal performance of different re-id algorithms using the proposed RPCs using single and pairwise camera videos from RPIfield, and discuss considerations for future research.
Abstract:Person re-identification (re-id) is a critical problem in video analytics applications such as security and surveillance. The public release of several datasets and code for vision algorithms has facilitated rapid progress in this area over the last few years. However, directly comparing re-id algorithms reported in the literature has become difficult since a wide variety of features, experimental protocols, and evaluation metrics are employed. In order to address this need, we present an extensive review and performance evaluation of single- and multi-shot re-id algorithms. The experimental protocol incorporates the most recent advances in both feature extraction and metric learning. To ensure a fair comparison, all of the approaches were implemented using a unified code library that includes 11 feature extraction algorithms and 22 metric learning and ranking techniques. All approaches were evaluated using a new large-scale dataset that closely mimics a real-world problem setting, in addition to 16 other publicly available datasets: VIPeR, GRID, CAVIAR, DukeMTMC4ReID, 3DPeS, PRID, V47, WARD, SAIVT-SoftBio, CUHK01, CHUK02, CUHK03, RAiD, iLIDSVID, HDA+ and Market1501. The evaluation codebase and results will be made publicly available for community use.
Abstract:Designing useful person re-identification systems for real-world applications requires attention to operational aspects not typically considered in academic research. Here, we focus on the temporal aspect of re-identification; that is, instead of finding a match to a probe person of interest in a fixed candidate gallery, we consider the more realistic scenario in which the gallery is continuously populated by new candidates over a long time period. A key question of interest for an operator of such a system is: how long is a correct match to a probe likely to remain in a rank-k shortlist of possible candidates? We propose to distill this information into a Rank Persistence Curve (RPC), which allows different algorithms' temporal performance characteristics to be directly compared. We present examples to illustrate the RPC using a new long-term dataset with multiple candidate reappearances, and discuss considerations for future re-identification research that explicitly involves temporal aspects.