Abstract:We present a method for post-processing point clouds' geometric information by applying a previously proposed fractional super-resolution technique to clouds compressed and decoded with MPEG's G-PCC codec. In some sense, this is a continuation of that previous work, which requires only a down-scaled point cloud and a scaling factor, both of which are provided by the G-PCC codec. For non-solid point clouds, an a priori down-scaling is required for improved efficiency. The method is compared to the GPCC itself, as well as machine-learning-based techniques. Results show a great improvement in quality over GPCC and comparable performance to the latter techniques, with the
Abstract:Point clouds have recently gained interest, especially for real-time applications and for 3D-scanned material, such as is used in autonomous driving, architecture, and engineering, to model real estate for renovation or display. Point clouds are associated with geometry information and attributes such as color. Be the color unique or direction-dependent (in the case of plenoptic point clouds), it reflects the colors observed by cameras displaced around the object. Hence, not only are the viewing references assumed, but the illumination spectrum and illumination geometry is also implicit. We propose a model-centric description of the 3D object, that is independent of the illumination and of the position of the cameras. We want to be able to describe the objects themselves such that, at a later stage, the rendering of the model may decide where to place illumination, from which it may calculate the image viewed by a given camera. We want to be able to describe transparent or translucid objects, mirrors, fishbowls, fog and smoke. Volumetric clouds may allow us to describe the air, however ``empty'', and introduce air particles, in a manner independent of the viewer position. For that, we rely on some eletromagnetic properties to arrive at seven attributes per voxel that would describe the material and its color or transparency. Three attributes are for the transmissivity of each color, three are for the attenuation of each color, and another attribute is for diffuseness. These attributes give information about the object to the renderer, with whom lies the decision on how to render and depict each object.
Abstract:Transforms using random matrices have been found to have many applications. We are concerned with the projection of a signal onto Gaussian-distributed random orthogonal bases. We also would like to easily invert the process through transposes in order to facilitate iterative reconstruction. We derive an efficient method to implement random unitary matrices of larger sizes through a set of Givens rotations. Random angles are hierarchically generated on-the-fly and the inverse merely requires traversing the angles in reverse order. Hierarchical randomization of angles also enables reduced storage. Using the random unitary matrices as building blocks we introduce random paraunitary systems (filter banks). We also highlight an efficient implementation of the paraunitary system and of its inverse. We also derive an adaptive under-decimated system, wherein one can control and adapt the amount of projections the signal undergoes, in effect, varying the sampling compression ratio as we go along the signal, without segmenting it. It may locally range from very compressive sampling matrices to (para) unitary random ones. One idea is to adapt to local sparseness characteristics of non-stationary signals.