Abstract:Prostate gland segmentation from T2-weighted MRI is a critical yet challenging task in clinical prostate cancer assessment. While deep learning-based methods have significantly advanced automated segmentation, most conventional approaches-particularly 2D convolutional neural networks (CNNs)-fail to leverage inter-slice anatomical continuity, limiting their accuracy and robustness. Fully 3D models offer improved spatial coherence but require large amounts of annotated data, which is often impractical in clinical settings. To address these limitations, we propose a hybrid architecture that models MRI sequences as spatiotemporal data. Our method uses a deep, pretrained DeepLabV3 backbone to extract high-level semantic features from each MRI slice and a recurrent convolutional head, built with ConvLSTM layers, to integrate information across slices while preserving spatial structure. This combination enables context-aware segmentation with improved consistency, particularly in data-limited and noisy imaging conditions. We evaluate our method on the PROMISE12 benchmark under both clean and contrast-degraded test settings. Compared to state-of-the-art 2D and 3D segmentation models, our approach demonstrates superior performance in terms of precision, recall, Intersection over Union (IoU), and Dice Similarity Coefficient (DSC), highlighting its potential for robust clinical deployment.
Abstract:In this paper, we obtain bounds on the probability of convergence to the optimal solution for the compact Genetic Algorithm (cGA) and the Population Based Incremental Learning (PBIL). We also give a sufficient condition for convergence of these algorithms to the optimal solution and compute a range of possible values of the parameters of these algorithms for which they converge to the optimal solution with a confidence level.
Abstract:The compact Genetic Algorithm (cGA) is an Estimation of Distribution Algorithm that generates offspring population according to the estimated probabilistic model of the parent population instead of using traditional recombination and mutation operators. The cGA only needs a small amount of memory; therefore, it may be quite useful in memory-constrained applications. This paper introduces a theoretical framework for studying the cGA from the convergence point of view in which, we model the cGA by a Markov process and approximate its behavior using an Ordinary Differential Equation (ODE). Then, we prove that the corresponding ODE converges to local optima and stays there. Consequently, we conclude that the cGA will converge to the local optima of the function to be optimized.