Abstract:The deployment of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems cannot rely solely on digital precoding due to hardware constraints. Instead, hybrid precoding, which combines digital and radio frequency (RF) techniques, has emerged as a potential alternative. This approach strikes a balance between performance and cost, addressing the limitations of signal mixers and analog-to-digital converters in mmWave systems. mmWave systems are designed to function in wideband channels with frequency selectivity, necessitating the use of orthogonal frequency-division multiplexing (OFDM) to mitigate dispersive channels. However, OFDM faces several challenges. First, it suffers from a high peak-to-average power ratio (PAPR) due to the linear combination of subcarriers. Second, it suffers from out-of-band (OOB) emissions due to the sharp spectral transitions of OFDM subcarriers and windowing-induced spectral leakage. Furthermore, phase shifter (PS) impairments at the RF transmitter precoder and the user combiner represent a limitation in practical mmWave systems, leading to phase errors. This work addresses these challenges. We study the problem of robust digital-RF precoding optimization for the downlink sum-rate maximization in hybrid multi-user (MU) MIMO-OFDM systems under maximum transmit power, PAPR, and OOB emission constraints. The formulated maximization problem is non-convex and difficult to solve. We propose a weighted minimum mean squared error (WMMSE) based block coordinate descent (BCD) method to iteratively optimize digital-RF precoders at the transmitter and digital-RF combiners at the users. Low-cost and scalable optimization approaches are proposed to efficiently solve the BCD subproblems. Extensive simulation results are conducted to demonstrate the efficiency of the proposed approaches and exhibit their superiority relative to well-known benchmarks.
Abstract:Due to the ever increasing data rate demand of beyond 5G networks and considering the wide range of Orthogonal Frequency Division Multipllexing (OFDM) technique in cellular systems, it is critical to reduce pilot overhead of OFDM systems in order to increase data rate of such systems. Due to sparsity of multipath channels, sparse recovery methods can be exploited to reduce pilot overhead. OFDM pilots are utilized as random samples for channel impulse response estimation. We propose a three-step sparsity recovery algorithm which is based on sparsity domain smoothing. Time domain residue computation, sparsity domain smoothing, and adaptive thresholding sparsifying are the three-steps of the proposed scheme. To the best of our knowledge, the proposed sparsity domain smoothing based thresholding recovery method known as SDS-IMAT has not been used for OFDM sparse channel estimation in the literature. Pilot locations are also derived based on the minimization of the measurement matrix coherence. Numerical results verify that the performance of the proposed scheme outperforms other existing thresholding and greedy recovery methods and has a near-optimal performance. The effectiveness of the proposed scheme is shown in terms of mean square error and bit error rate.