Abstract:Segmenting Synthetic Aperture Radar (SAR) images is crucial for many remote sensing applications, particularly water body detection. However, deep learning-based segmentation models often face challenges related to convergence speed and stability, mainly due to the complex statistical distribution of this type of data. In this study, we evaluate the impact of mode normalization on two widely used semantic segmentation models, U-Net and SegNet. Specifically, we integrate mode normalization, to reduce convergence time while maintaining the performance of the baseline models. Experimental results demonstrate that mode normalization significantly accelerates convergence. Furthermore, cross-validation results indicate that normalized models exhibit increased stability in different zones. These findings highlight the effectiveness of normalization in improving computational efficiency and generalization in SAR image segmentation.
Abstract:In this paper, we investigate the conversion of a Twitter corpus into geo-referenced raster cells holding the probability of the associated geographical areas of being flooded. We describe a baseline approach that combines a density ratio function, aggregation using a spatio-temporal Gaussian kernel function, and TFIDF textual features. The features are transformed to probabilities using a logistic regression model. The described method is evaluated on a corpus collected after the floods that followed Hurricane Harvey in the Houston urban area in August-September 2017. The baseline reaches a F1 score of 68%. We highlight research directions likely to improve these initial results.