Abstract:Segmenting Synthetic Aperture Radar (SAR) images is crucial for many remote sensing applications, particularly water body detection. However, deep learning-based segmentation models often face challenges related to convergence speed and stability, mainly due to the complex statistical distribution of this type of data. In this study, we evaluate the impact of mode normalization on two widely used semantic segmentation models, U-Net and SegNet. Specifically, we integrate mode normalization, to reduce convergence time while maintaining the performance of the baseline models. Experimental results demonstrate that mode normalization significantly accelerates convergence. Furthermore, cross-validation results indicate that normalized models exhibit increased stability in different zones. These findings highlight the effectiveness of normalization in improving computational efficiency and generalization in SAR image segmentation.
Abstract:Loss functions are at the heart of deep learning, shaping how models learn and perform across diverse tasks. They are used to quantify the difference between predicted outputs and ground truth labels, guiding the optimization process to minimize errors. Selecting the right loss function is critical, as it directly impacts model convergence, generalization, and overall performance across various applications, from computer vision to time series forecasting. This paper presents a comprehensive review of loss functions, covering fundamental metrics like Mean Squared Error and Cross-Entropy to advanced functions such as Adversarial and Diffusion losses. We explore their mathematical foundations, impact on model training, and strategic selection for various applications, including computer vision (Discriminative and generative), tabular data prediction, and time series forecasting. For each of these categories, we discuss the most used loss functions in the recent advancements of deep learning techniques. Also, this review explore the historical evolution, computational efficiency, and ongoing challenges in loss function design, underlining the need for more adaptive and robust solutions. Emphasis is placed on complex scenarios involving multi-modal data, class imbalances, and real-world constraints. Finally, we identify key future directions, advocating for loss functions that enhance interpretability, scalability, and generalization, leading to more effective and resilient deep learning models.