Abstract:Accurate classification of computed tomography (CT) images is essential for diagnosis and treatment planning, but existing methods often struggle with the subtle and spatially diverse nature of pathological features. Current approaches typically process images uniformly, limiting their ability to detect localized abnormalities that require focused analysis. We introduce UGPL, an uncertainty-guided progressive learning framework that performs a global-to-local analysis by first identifying regions of diagnostic ambiguity and then conducting detailed examination of these critical areas. Our approach employs evidential deep learning to quantify predictive uncertainty, guiding the extraction of informative patches through a non-maximum suppression mechanism that maintains spatial diversity. This progressive refinement strategy, combined with an adaptive fusion mechanism, enables UGPL to integrate both contextual information and fine-grained details. Experiments across three CT datasets demonstrate that UGPL consistently outperforms state-of-the-art methods, achieving improvements of 3.29%, 2.46%, and 8.08% in accuracy for kidney abnormality, lung cancer, and COVID-19 detection, respectively. Our analysis shows that the uncertainty-guided component provides substantial benefits, with performance dramatically increasing when the full progressive learning pipeline is implemented. Our code is available at: https://github.com/shravan-18/UGPL
Abstract:Lensless imaging offers a significant opportunity to develop ultra-compact cameras by removing the conventional bulky lens system. However, without a focusing element, the sensor's output is no longer a direct image but a complex multiplexed scene representation. Traditional methods have attempted to address this challenge by employing learnable inversions and refinement models, but these methods are primarily designed for 2D reconstruction and do not generalize well to 3D reconstruction. We introduce GANESH, a novel framework designed to enable simultaneous refinement and novel view synthesis from multi-view lensless images. Unlike existing methods that require scene-specific training, our approach supports on-the-fly inference without retraining on each scene. Moreover, our framework allows us to tune our model to specific scenes, enhancing the rendering and refinement quality. To facilitate research in this area, we also present the first multi-view lensless dataset, LenslessScenes. Extensive experiments demonstrate that our method outperforms current approaches in reconstruction accuracy and refinement quality. Code and video results are available at https://rakesh-123-cryp.github.io/Rakesh.github.io/