Abstract:The rise of large language models (LLMs) has created new possibilities for digital twins in healthcare. However, the deployment of such systems in consumer health contexts raises significant concerns related to hallucination, bias, lack of transparency, and ethical misuse. In response to recommendations from health authorities such as the World Health Organization (WHO), we propose Responsible Health Twin (RHealthTwin), a principled framework for building and governing AI-powered digital twins for well-being assistance. RHealthTwin processes multimodal inputs that guide a health-focused LLM to produce safe, relevant, and explainable responses. At the core of RHealthTwin is the Responsible Prompt Engine (RPE), which addresses the limitations of traditional LLM configuration. Conventionally, users input unstructured prompt and the system instruction to configure the LLM, which increases the risk of hallucination. In contrast, RPE extracts predefined slots dynamically to structure both inputs. This guides the language model to generate responses that are context aware, personalized, fair, reliable, and explainable for well-being assistance. The framework further adapts over time through a feedback loop that updates the prompt structure based on user satisfaction. We evaluate RHealthTwin across four consumer health domains including mental support, symptom triage, nutrition planning, and activity coaching. RPE achieves state-of-the-art results with BLEU = 0.41, ROUGE-L = 0.63, and BERTScore = 0.89 on benchmark datasets. Also, we achieve over 90% in ethical compliance and instruction-following metrics using LLM-as-judge evaluation, outperforming baseline strategies. We envision RHealthTwin as a forward-looking foundation for responsible LLM-based applications in health and well-being.
Abstract:Recent advancements in cognitive computing, with the integration of deep learning techniques, have facilitated the development of intelligent cognitive systems (ICS). This is particularly beneficial in the context of rail defect detection, where the ICS would emulate human-like analysis of image data for defect patterns. Despite the success of Convolutional Neural Networks (CNN) in visual defect classification, the scarcity of large datasets for rail defect detection remains a challenge due to infrequent accident events that would result in defective parts and images. Contemporary researchers have addressed this data scarcity challenge by exploring rule-based and generative data augmentation models. Among these, Variational Autoencoder (VAE) models can generate realistic data without extensive baseline datasets for noise modeling. This study proposes a VAE-based synthetic image generation technique for rail defects, incorporating weight decay regularization and image reconstruction loss to prevent overfitting. The proposed method is applied to create a synthetic dataset for the Canadian Pacific Railway (CPR) with just 50 real samples across five classes. Remarkably, 500 synthetic samples are generated with a minimal reconstruction loss of 0.021. A Visual Transformer (ViT) model underwent fine-tuning using this synthetic CPR dataset, achieving high accuracy rates (98%-99%) in classifying the five defect classes. This research offers a promising solution to the data scarcity challenge in rail defect detection, showcasing the potential for robust ICS development in this domain.
Abstract:Accurate Defect detection is crucial for ensuring the trustworthiness of intelligent railway systems. Current approaches rely on single deep-learning models, like CNNs, which employ a large amount of data to capture underlying patterns. Training a new defect classifier with limited samples often leads to overfitting and poor performance on unseen images. To address this, researchers have advocated transfer learning and fine-tuning the pre-trained models. However, using a single backbone network in transfer learning still may cause bottleneck issues and inconsistent performance if it is not suitable for a specific problem domain. To overcome these challenges, we propose a reusable AI-enabled defect detection approach. By combining ensemble learning with transfer learning models (VGG-19, MobileNetV3, and ResNet-50), we improved the classification accuracy and achieved consistent performance at a certain phase of training. Our empirical analysis demonstrates better and more consistent performance compared to other state-of-the-art approaches. The consistency substantiates the reusability of the defect detection system for newly evolved defected rail parts. Therefore we anticipate these findings to benefit further research and development of reusable AI-enabled solutions for railway systems.