Abstract:Federated learning (FL) faces significant challenges in Internet of Things (IoT) networks due to device limitations in energy and communication resources, especially when considering the large size of FL models. From an energy perspective, the challenge is aggravated if devices rely on energy harvesting (EH), as energy availability can vary significantly over time, influencing the average number of participating users in each iteration. Additionally, the transmission of large model updates is more susceptible to interference from uncorrelated background traffic in shared wireless environments. As an alternative, federated distillation (FD) reduces communication overhead and energy consumption by transmitting local model outputs, which are typically much smaller than the entire model used in FL. However, this comes at the cost of reduced model accuracy. Therefore, in this paper, we propose FL-distillation alternation (FLDA). In FLDA, devices alternate between FD and FL phases, balancing model information with lower communication overhead and energy consumption per iteration. We consider a multichannel slotted-ALOHA EH-IoT network subject to background traffic/interference. In such a scenario, FLDA demonstrates higher model accuracy than both FL and FD, and achieves faster convergence than FL. Moreover, FLDA achieves target accuracies saving up to 98% in energy consumption, while also being less sensitive to interference, both relative to FL.
Abstract:Distributed learning on edge devices has attracted increased attention with the advent of federated learning (FL). Notably, edge devices often have limited battery and heterogeneous energy availability, while multiple rounds are required in FL for convergence, intensifying the need for energy efficiency. Energy depletion may hinder the training process and the efficient utilization of the trained model. To solve these problems, this letter considers the integration of energy harvesting (EH) devices into a FL network with multi-channel ALOHA, while proposing a method to ensure both low energy outage probability and successful execution of future tasks. Numerical results demonstrate the effectiveness of this method, particularly in critical setups where the average energy income fails to cover the iteration cost. The method outperforms a norm based solution in terms of convergence time and battery level.