Abstract:Adaptive Curriculum Sequencing (ACS) is essential for personalized online learning, yet current approaches struggle to balance complex educational constraints and maintain optimization stability. This paper proposes a Memetic Walrus Optimizer (MWO) that enhances optimization performance through three key innovations: (1) an expert-guided strategy with aging mechanism that improves escape from local optima; (2) an adaptive control signal framework that dynamically balances exploration and exploitation; and (3) a three-tier priority mechanism for generating educationally meaningful sequences. We formulate ACS as a multi-objective optimization problem considering concept coverage, time constraints, and learning style compatibility. Experiments on the OULAD dataset demonstrate MWO's superior performance, achieving 95.3% difficulty progression rate (compared to 87.2% in baseline methods) and significantly better convergence stability (standard deviation of 18.02 versus 28.29-696.97 in competing algorithms). Additional validation on benchmark functions confirms MWO's robust optimization capability across diverse scenarios. The results demonstrate MWO's effectiveness in generating personalized learning sequences while maintaining computational efficiency and solution quality.
Abstract:Student expression recognition has become an essential tool for assessing learning experiences and emotional states. This paper introduces xLSTM-FER, a novel architecture derived from the Extended Long Short-Term Memory (xLSTM), designed to enhance the accuracy and efficiency of expression recognition through advanced sequence processing capabilities for student facial expression recognition. xLSTM-FER processes input images by segmenting them into a series of patches and leveraging a stack of xLSTM blocks to handle these patches. xLSTM-FER can capture subtle changes in real-world students' facial expressions and improve recognition accuracy by learning spatial-temporal relationships within the sequence. Experiments on CK+, RAF-DF, and FERplus demonstrate the potential of xLSTM-FER in expression recognition tasks, showing better performance compared to state-of-the-art methods on standard datasets. The linear computational and memory complexity of xLSTM-FER make it particularly suitable for handling high-resolution images. Moreover, the design of xLSTM-FER allows for efficient processing of non-sequential inputs such as images without additional computation.