Abstract:This study investigates an explainable reasoning method for financial decision-making based on knowledge-enhanced large language model agents. To address the limitations of traditional financial decision methods that rely on parameterized knowledge, lack factual consistency, and miss reasoning chains, an integrated framework is proposed that combines external knowledge retrieval, semantic representation, and reasoning generation. The method first encodes financial texts and structured data to obtain semantic representations, and then retrieves task-related information from external knowledge bases using similarity computation. Internal representations and external knowledge are combined through weighted fusion, which ensures fluency while improving factual accuracy and completeness of generated content. In the reasoning stage, a multi-head attention mechanism is introduced to construct logical chains, allowing the model to present transparent causal relationships and traceability during generation. Finally, the model jointly optimizes task objectives and explanation consistency objectives, which enhances predictive performance and reasoning interpretability. Experiments on financial text processing and decision tasks show that the method outperforms baseline approaches in accuracy, text generation quality, and factual support, verifying the effectiveness of knowledge enhancement and explainable reasoning. Overall, the proposed approach overcomes the limitations of traditional models in semantic coverage and reasoning transparency, and demonstrates strong practical value in complex financial scenarios.
Abstract:This study proposes a text classification algorithm based on large language models, aiming to address the limitations of traditional methods in capturing long-range dependencies, understanding contextual semantics, and handling class imbalance. The framework includes text encoding, contextual representation modeling, attention-based enhancement, feature aggregation, and classification prediction. In the representation stage, deep semantic embeddings are obtained through large-scale pretrained language models, and attention mechanisms are applied to enhance the selective representation of key features. In the aggregation stage, global and weighted strategies are combined to generate robust text-level vectors. In the classification stage, a fully connected layer and Softmax output are used to predict class distributions, and cross-entropy loss is employed to optimize model parameters. Comparative experiments introduce multiple baseline models, including recurrent neural networks, graph neural networks, and Transformers, and evaluate them on Precision, Recall, F1-Score, and AUC. Results show that the proposed method outperforms existing models on all metrics, with especially strong improvements in Recall and AUC. In addition, sensitivity experiments are conducted on hyperparameters and data conditions, covering the impact of hidden dimensions on AUC and the impact of class imbalance ratios on Recall. The findings demonstrate that proper model configuration has a significant effect on performance and reveal the adaptability and stability of the model under different conditions. Overall, the proposed text classification method not only achieves effective performance improvement but also verifies its robustness and applicability in complex data environments through systematic analysis.