Abstract:Implicit neural representations have recently been extended to represent convolutional neural network weights via neural representation for neural networks, offering promising parameter compression benefits. However, standard multi-layer perceptrons used in neural representation for neural networks exhibit a pronounced spectral bias, hampering their ability to reconstruct high-frequency details effectively. In this paper, we propose SBS, a parameter-efficient enhancement to neural representation for neural networks that suppresses spectral bias using two techniques: (1) a unidirectional ordering-based smoothing that improves kernel smoothness in the output space, and (2) unidirectional ordering-based smoothing aware random fourier features that adaptively modulate the frequency bandwidth of input encodings based on layer-wise parameter count. Extensive evaluations on various ResNet models with datasets CIFAR-10, CIFAR-100, and ImageNet, demonstrate that SBS achieves significantly better reconstruction accuracy with less parameters compared to SOTA.