Abstract:Reliance on generative AI can reduce cultural variance and diversity, especially in creative work. This reduction in variance has already led to problems in model performance, including model collapse and hallucination. In this paper, we examine the long-term consequences of AI use for human cultural evolution and the conditions under which widespread AI use may lead to "cultural collapse", a process in which reliance on AI-generated content reduces human variation and innovation and slows cumulative cultural evolution. Using an agent-based model and evolutionary game theory, we compare two types of AI use: complement and substitute. AI-complement users seek suggestions and guidance while remaining the main producers of the final output, whereas AI-substitute users provide minimal input, and rely on AI to produce most of the output. We then study how these use strategies compete and spread under evolutionary dynamics. We find that AI-substitute users prevail under individual-level selection despite the stronger reduction in cultural variance. By contrast, AI-complement users can benefit their groups by maintaining the variance needed for exploration, and can therefore be favored under cultural group selection when group boundaries are strong. Overall, our findings shed light on the long-term, population-level effects of AI adoption and inform policy and organizational strategies to mitigate these risks.
Abstract:A growing body of multi-agent studies with Large Language Models (LLMs) explores how norms and cooperation emerge in mixed-motive scenarios, where pursuing individual gain can undermine the collective good. While prior work has explored these dynamics in both richly contextualized simulations and simplified game-theoretic environments, most LLM systems featuring common-pool resource (CPR) games provide agents with explicit reward functions directly tied to their actions. In contrast, human cooperation often emerges without full visibility into payoffs and population, relying instead on heuristics, communication, and punishment. We introduce a CPR simulation framework that removes explicit reward signals and embeds cultural-evolutionary mechanisms: social learning (adopting strategies and beliefs from successful peers) and norm-based punishment, grounded in Ostrom's principles of resource governance. Agents also individually learn from the consequences of harvesting, monitoring, and punishing via environmental feedback, enabling norms to emerge endogenously. We establish the validity of our simulation by reproducing key findings from existing studies on human behavior. Building on this, we examine norm evolution across a $2\times2$ grid of environmental and social initialisations (resource-rich vs. resource-scarce; altruistic vs. selfish) and benchmark how agentic societies comprised of different LLMs perform under these conditions. Our results reveal systematic model differences in sustaining cooperation and norm formation, positioning the framework as a rigorous testbed for studying emergent norms in mixed-motive LLM societies. Such analysis can inform the design of AI systems deployed in social and organizational contexts, where alignment with cooperative norms is critical for stability, fairness, and effective governance of AI-mediated environments.