Abstract:Large language models (LLMs) are rapidly pushing the limits of contemporary computing hardware. For example, training GPT-3 has been estimated to consume around 1300 MWh of electricity, and projections suggest future models may require city-scale (gigawatt) power budgets. These demands motivate exploration of computing paradigms beyond conventional von Neumann architectures. This review surveys emerging photonic hardware optimized for next-generation generative AI computing. We discuss integrated photonic neural network architectures (e.g., Mach-Zehnder interferometer meshes, lasers, wavelength-multiplexed microring resonators) that perform ultrafast matrix operations. We also examine promising alternative neuromorphic devices, including spiking neural network circuits and hybrid spintronic-photonic synapses, which combine memory and processing. The integration of two-dimensional materials (graphene, TMDCs) into silicon photonic platforms is reviewed for tunable modulators and on-chip synaptic elements. Transformer-based LLM architectures (self-attention and feed-forward layers) are analyzed in this context, identifying strategies and challenges for mapping dynamic matrix multiplications onto these novel hardware substrates. We then dissect the mechanisms of mainstream LLMs, such as ChatGPT, DeepSeek, and LLaMA, highlighting their architectural similarities and differences. We synthesize state-of-the-art components, algorithms, and integration methods, highlighting key advances and open issues in scaling such systems to mega-sized LLM models. We find that photonic computing systems could potentially surpass electronic processors by orders of magnitude in throughput and energy efficiency, but require breakthroughs in memory, especially for long-context windows and long token sequences, and in storage of ultra-large datasets.
Abstract:With the rapid evolution of the Internet and the exponential proliferation of information, users encounter information overload and the conundrum of choice. Personalized recommendation systems play a pivotal role in alleviating this burden by aiding users in filtering and selecting information tailored to their preferences and requirements. Such systems not only enhance user experience and satisfaction but also furnish opportunities for businesses and platforms to augment user engagement, sales, and advertising efficacy.This paper undertakes a comparative analysis between the operational mechanisms of traditional e-commerce commodity classification systems and personalized recommendation systems. It delineates the significance and application of personalized recommendation systems across e-commerce, content information, and media domains. Furthermore, it delves into the challenges confronting personalized recommendation systems in e-commerce, including data privacy, algorithmic bias, scalability, and the cold start problem. Strategies to address these challenges are elucidated.Subsequently, the paper outlines a personalized recommendation system leveraging the BERT model and nearest neighbor algorithm, specifically tailored to address the exigencies of the eBay e-commerce platform. The efficacy of this recommendation system is substantiated through manual evaluation, and a practical application operational guide and structured output recommendation results are furnished to ensure the system's operability and scalability.